摘要:
The present application discloses shared robot knowledge bases for use with cloud computing systems. In one embodiment, the cloud computing system collects data from a robot about an object the robot has encountered in its environment, and stores the received data in the shared robot knowledge base. In another embodiment, the cloud computing system sends instructions for interacting with an object to a robot, receives feedback from the robot based on its interaction with the object, and updates data in the shared robot knowledge base based on the feedback. In yet another embodiment, the cloud computing system sends instructions to a robot for executing an application based on information stored in the shared robot knowledge base. In the disclosed embodiments, information in the shared robot knowledge bases is updated based on robot experiences so that any particular robot may benefit from prior experiences of other robots.
摘要:
Methods and systems for providing a three-dimensional (3D) image viewer in a webpage are provided. According to an example method, a webpage may be provided, and the webpage may include embedded language that identifies a 3D image viewer to be provided within the webpage. Based on the embedded language, a computer having a processor and a memory may request information associated with rendering a 3D object data model in the 3D image viewer. The method may also include providing the 3D image viewer within the webpage, and receiving information associated with rendering the 3D object data model. Additionally, the 3D object data model may be rendered in the 3D image viewer based on the received information. Additional example systems and methods are described herein.
摘要:
Systems and methods for collecting data from an object are provided. In examples, a plurality of sensing components are configured to receive information indicative of one or more characteristics of the object. The information indicative of one or more characteristics of the object can be associated with respective data points of the object. The system is further configured to generate a three-dimensional (3D) view of the object based on the information indicative of one or more characteristics of the object and the association with respective data points.
摘要:
Methods and systems for material refinement for portions of a three-dimensional (3D) object data model are provided. An example method may include rendering a portion of a 3D object data model, and determining a first appearance metric between an appearance of the portion in the rendered view and a two-dimensional (2D) image. For one or more iterations, a modification to material properties associated with the portion may be determined based on the first appearance metric, and another view of the portion of the 3D object data model may be rendered. Also for the one or more iterations, another appearance metric between and an appearance of the portion in the rendered another view and the 2D image may be determined. Additionally, modified material properties for the portion that are associated with a minimum appearance metric of the one or more iterations may be stored for the 3D object data model.
摘要:
Methods and systems for interacting with multiple three-dimensional (3D) object data models are provided. An example method may involve receiving an annotated template of a first three-dimensional (3D) object data model. The annotated template may be associated with a given category of objects and may include one or more annotations to one or more aspects of an object described by the first 3D object data model. The method may also include determining matching correspondences between the first 3D object data model and a second 3D object data model that is a given object in the given category. For the one or more matching correspondences, an annotation that is associated with a correspondence point of the first 3D object data model may be applied as a call-out to a matching correspondence point of the second 3D object data model.
摘要:
Methods and systems for using a mobile device with a multi-element display, a camera, and a controller to determine a 3D model of a target object. The multi-element display is configured to generate a light field. At least a portion of the light field reflects from a target object. The camera is configured to capture a plurality of images based on the portion of the light field reflected from the target object. The controller is configured to determine a 3D model of the target object based on the images. The 3D model includes three-dimensional shape and color information about the target object. In some examples, the light field could include specific light patterns, spectral content, and other forms of modulated/structured light.
摘要:
Disclosed are methods and systems for determining and displaying a simulated deformation of a 3D object data model. In one aspect, a method is disclosed that includes causing a force to be applied to an object to cause a deformation of the object and causing a plurality of reference scans of the object to be captured. The method further includes, based on the plurality of reference scans, generating a 3D object data model representing the object and, further based on the plurality of reference scans, identifying a constraint point of the 3D object data model, where the constraint point represents a point of minimum deformation of the object. The method still further includes selecting a predefined deformation model, where the predefined deformation model defines a simulated deformation, and where the simulated deformation simulates at least a portion of the deformation of the object proximate to the point of minimum deformation.
摘要:
A method includes receiving first sensor data acquired by a first sensor in communication with a cloud computing system. The first sensor data has a first set of associated attributes including a time and a location at which the first sensor data was acquired. The method also includes receiving second sensor data acquired by a second sensor in communication with the cloud computing system. The second data has a second set of associated attributes including a time and a location at which the second sensor data was acquire. Further, the method includes generating a data processing result based at least in part on the first sensor data, the first set of associated attributes, the second sensor data, and the second set of associated attributes and instructing a robot in communication with the cloud computing system to perform a task based at least in part on the data processing result.
摘要:
Disclosed are methods and systems for building data models by using light to determine material properties of illuminated objects. In an embodiment, a system includes a set of device pairs (of lighting-source and image-capture devices) arranged on the perimeter (and directed at a central region of) a 3D shape. The system iterates from an initial state through a plurality of imaging states. The initial state involves (1) an object being situated in a controlled-lighting space and (2) the device pairs being positioned within the controlled-lighting space and around the object, which is situated in the central region of the 3D shape. Each imaging state involves the activation of an imaging-state-specific subset of lighting-source and image-capture devices. The system captures image data indicative of the appearance of the object during the imaging states, and stores that data in a 3D-data model of the object.
摘要:
Methods and systems for acquiring and ranking image sets are described. In an example, a computing device may be configured to determine a feature-based score that may be based on features of the object including geometry of the object. The computing device also may be configured to receive a plurality of sets of images of the object. A number of respective images of each set of images may be based on the feature-based score. The computing device further may be configured to determine for each set of images a respective image-based score based on a prospective three-dimensional (3D) visualization of the object to be generated by a merged output of that set of images. The computing device also may be configured to determine a respective ranking for each set of images based on the respective image-based score; and select a set of images based on the respective ranking.