摘要:
This invention locally controls the pitch of speech and audio signals. The invention is based on a seamless time scale modification (S-TSM) scheme connected to a synchronized sampling rate converter that switches between different time scale factors in a seamless manner and controls pitch during playback in a nearly continuous way.
摘要:
A time-domain time-scale modification method based on the synchronous overlap-and-add method consists of a generalization of the envelope-matching time-scale modification method. The cross-correlation function employs a fixed-size cross-correlation buffer to eliminate the need for normalization inside the search loop. This fixed-size cross-correlation buffer is the center of the overlap region corresponding to the case where the fine overlap adjustment value is set to zero. The computational cost of this invention is lower than any other method with a comparable quality.
摘要:
This invention involves time-scale modification of audio signals. The invention describes overlap and add time scale modification with variable input and output buffer sizes. Seamless speed change is achieved by keeping track of previously processed data to avoid discontinuities during playback speed transitions.
摘要:
This invention locally controls the pitch of speech and audio signals. The invention is based on a seamless time scale modification (S-TSM) scheme connected to a synchronized sampling rate converter that switches between different time scale factors in a seamless manner and controls pitch during playback in a nearly continuous way.
摘要:
A time-domain time-scale modification method based on the synchronous overlap-and-add method consists of a generalization of the envelope-matching time-scale modification method. The cross-correlation function employs n most significant bits rather than merely the sign bit of the prior envelope matching method. This provides higher accuracy for n>1. A fixed-size cross-correlation buffer is employed to eliminate the need for normalization inside the search loop. This invention makes full use of fast/parallel shift and multiply-and-accumulate (MAC) instructions of current digital signal processors to become at the same time faster and more precise than envelope-matching time-domain time-scale modification.
摘要:
An efficient time scale modification (TSM) scheme for stereo signals is proposed where the overlap point is calculated just once per stereo frame based on a downmixed signal. The proposed scheme results in significantly lower computational cost compared with conventional methods: about 1.2 to 1.3 times the amount of computation required by monoaural signals, against 2.0 times the amount of computation required by channel-independent methods. Listening tests indicate that the quality achieved is higher than conventional channel-independent approaches due to the preservation of the spatial localization of the sound.
摘要:
Audio loudspeaker and headphone virtualizers and cross-talk cancellers and methods use separate virtual speaker locations for different Bark frequency bands and a single reverberation filter for multi-channel virtualizer inputs.
摘要:
This invention involves time-scale modification of audio signals. The invention describes overlap and add time scale modification with variable input and output buffer sizes. Seamless speed change is achieved by keeping track of previously processed data to avoid discontinuities during playback speed transitions.
摘要:
A time-domain time-scale modification method based on the synchronous overlap-and-add method consists of a generalization of the envelope-matching time-scale modification method. The cross-correlation function employs a fixed-size cross-correlation buffer to eliminate the need for normalization inside the search loop. This fixed-size cross-correlation buffer is the center of the overlap region corresponding to the case where the fine overlap adjustment value is set to zero. The computational cost of this invention is lower than any other method with a comparable quality.
摘要:
Audio loudspeaker and headphone virtualizers and cross-talk cancellers and methods use separate virtual speaker locations for different Bark frequency bands and a single reverberation filter for multi-channel virtualizer inputs.