摘要:
A scalable processing system includes a memory device having a plurality of executable program instructions, wherein each of the executable program instructions includes a timetag data field indicative of the nominal sequential order of the associated executable program instructions. The system also includes a plurality of processing elements, which are configured and arranged to receive executable program instructions from the memory device, wherein each of the processing elements executes executable instructions having the highest priority as indicated by the state of the timetag data field.
摘要:
A scalable processing system includes a memory device having a plurality of executable program instructions, wherein each of the executable program instructions includes a timetag data field indicative of the nominal sequential order of the associated executable program instructions. The system also includes a plurality of processing elements, which are configured and arranged to receive executable program instructions from the memory device, wherein each of the processing elements executes executable instructions having the highest priority as indicated by the state of the timetag data field.
摘要:
A scalable processing system includes a memory device having a plurality of executable program instructions, wherein each of the executable program instructions includes a timetag data field indicative of the nominal sequential order of the associated executable program instructions. The system also includes a plurality of processing elements, which are configured and arranged to recieve executable program instructions from the memory device, wherein each of the processing elements executes executable instructions having the highest priority as indicated by the state of the timetag data field.
摘要:
A scalable processing system includes a memory device having a plurality of executable program instructions, wherein each of the executable program instructions includes a timetag data field indicative of the nominal sequential order of the associated executable program instructions. The system also includes a plurality of processing elements, which are configured and arranged to receive executable program instructions from the memory device, wherein each of the processing elements executes executable instructions having the highest priority as indicated by the state of the timetag data field.
摘要:
A scalable processing system includes a memory device having a plurality of executable program instructions, wherein each of the executable program instructions includes a timetag data field indicative of the nominal sequential order of the associated executable program instructions. The system also includes a plurality of processing elements, which are configured and arranged to receive executable program instructions from the memory device, wherein each of the processing elements executes executable instructions having the highest priority as indicated by the state of the timetag data field.
摘要:
A computing device that provides hardware conversion of flow control predicates associated with program instructions executable within the computing device, detects the beginning and the end of a branch domain of the program instructions, and realizes the beginning and the end of the branch domain at execution time, for selectively enabling and disabling instructions within said branch domain.
摘要:
A computing device that provides hardware conversion of flow control predicates associated with program instructions executable within the computing device, detects the beginning and the end of a branch domain of the program instructions, and realizes the beginning and the end of the branch domain at execution time, for selectively enabling and disabling instructions within said branch domain.
摘要:
A computing device that provides hardware conversion of flow control predicates associated with program instructions executable within the computing device, detects the beginning and the end of a branch domain of the program instructions, and realizes the beginning and the end of the branch domain at execution time, for selectively enabling and disabling instructions within said branch domain.
摘要:
An architecture for a central processing unit (cpu) provides for the extraction of low-level concurrency from sequential instruction streams. The cpu includes an instruction queue, a plurality of processing elements, a sink storage matrix for temporary storage of data elements, and relational matrixes storing dependencies between instructions in the queue. An execution matrix stores the dynamic execution state of the instructions in the queue. An executable independence calculator determines which instructions are eligible for execution and the location of source data elements. New techniques are disclosed for determining data independence of instructions, for branch prediction without state restoration or backtracking, and for the decoupling of instruction execution from memory updating.
摘要:
The present invention performs a digital computation with a lower than worst-case-required clock period (i.e., a faster clock), and at the same time performs the same computation with a larger, worst-case-assumed, clock period (i.e., a slower clock) on a second system with identical hardware. The outputs from the computations are compared to determine if an error has occurred. If there is a difference in the two answers, the faster computation must be in error (i.e., a miscalculation has occurred), and the system uses the answer from the slower system. In one embodiment, the present invention utilizes two copies of the slower system that each run half as fast as the main system. However, the two copies produce results in the aggregate at the same rate as the main system, which is running at a much faster rate than possible without the invention. Hence the present invention improves performance (e.g., speed), albeit with more hardware. Advantageously, the present invention dynamically adapts to achieve the best performance possible under the actual operating conditions.