Abstract:
A method for manufacturing a glass substrate comprises a surface processing step of performing surface processing for forming unevenness on a glass surface. In the surface processing step, protruded portions having a height of 1nm or more from an average line of a roughness curve are dispersedly formed on the glass surface. In the surface processing step, the surface processing is performed such that a protruded portion area ratio is 0.5 to 10%. The protruded portion area ratio is a ratio of an area of the protruded portions with respect to an area of any rectangular region. The rectangular region has a square shape with a side length of 1 μm. In the surface processing step, in a case where the rectangular region is equally divided into at least one hundred divided regions having a square shape, the surface processing is performed such that a protruded portion content ratio is 80% or more. The protruded portion content ratio is a ratio of the number of divided regions having the protruded portions with respect to the number of divided regions included in the rectangular region.
Abstract:
A method for manufacturing a glass substrate for a display includes a step of producing a glass substrate and a step of performing a surface treatment on one glass surface of major surfaces of the glass substrate to form surface unevenness. The surface treatment is performed such that protruded portions having a height of 1 nm or more from the surface roughness central plane of the surface unevenness are dispersedly provided on the glass surface after the surface treatment and the area ratio of the protruded portions with respect to the area of the glass surface is 0.5-10%. Using this glass substrate, semiconductor elements are formed on a major surface of the glass substrate opposite to the glass surface. Accordingly, a display panel is produced.
Abstract:
A method for manufacturing a glass substrate for a display includes a step of producing a glass substrate and a step of performing a surface treatment on one glass surface of major surfaces of the glass substrate to form surface unevenness. The surface treatment is performed such that protruded portions having a height of 1 nm or more from the surface roughness central plane of the surface unevenness are dispersedly provided on the glass surface after the surface treatment and the area ratio of the protruded portions with respect to the area of the glass surface is 0.5-10%. Using this glass substrate, semiconductor elements are formed on a major surface of the glass substrate opposite to the glass surface. Accordingly, a display panel is produced.