摘要:
The present invention is directed towards a method of producing single wall carbon nanotubes which comprises providing a catalyst comprising an alumina support and a component selected from the group consisting of reduced Fe, reduced Fe/Mo, Fe oxide, and Fe/Mo oxide, and growing, in an inert atmosphere, single wall carbon nanotubes by passing a gas comprising methane over the catalyst at a temperature and for a time sufficient to grow single wall carbon nanotubes. The invention is also directed towards a single wall carbon nanotube produced by such a method. The invention is also directed towards a catalyst for producing SWNTs, wherein the catalyst comprises an alumina support and a component selected from the group consisting of reduced Fe, reduced Fe/Mo, Fe oxide, and Fe/Mo oxide.
摘要:
Carbon fiber/tubes are prepared by pyrolyzing a catalyst system that contains one or more diluents to facilitate control of the diameter of the formed carbon fiber/tube.
摘要:
Disclosed are methods of purifying mixtures comprising nanofibers and/or nanotubes and residual catalyst particles that are covered by outer layers of the nanotube or nanofiber material. The mixtures are exposed to electromagnetic radiation, which induces localized heating in the residual catalyst particles. The localized heating creates breaches in the outer layers. Thereafter, the residual catalyst particles may be removed under relatively mild conditions that do not significantly affect the structural integrity of the nanotubes or nanofibers. The methods of the invention have been used to particular advantage in the purification of single wall carbon nanotubes (SWNTs) synthesized using metal catalysts. For these SWNTs, microwave radiation is preferably used to induce the localized heating, the outer layers are preferably removed at least in part by carrying out the localized heating under air, and the residual catalyst may be removed by exposure to relatively dilute aqueous acid.
摘要:
Carbon structures, e.g. carbon nano-fibers, suitable for absorbing hydrogen at low pressures and low temperatures are produced by a selective oxidation and/or acid reflux process. The process includes heating an impure mixture containing a crystalline form of carbon in the presence of an oxidizing gas at a temperature and time sufficient to selectively oxidize and remove a substantial amount of any amorphous carbon impurities from the mixture. Metal containing impurities can be removed from the mixture by exposing the desired carbon and accompanying impurities to an acid to produce a carbon fiber that is substantially free of both non-fiber carbon impurities and metal impurities. Another aspect of the present invention includes purified carbon structures that can store hydrogen at low pressures and temperatures.
摘要:
The present disclosure is directed to methods for producing a single-walled carbon nanotube in a chemical vapor deposition (CVD) reactor. The methods comprise contacting liquid catalyst droplets and a carbon source in the reactor, and forming a single walled carbon nanotube at the surface of the liquid catalyst droplets.
摘要:
Methods are provided for the preparation of single-walled carbon nanotubes using chemical vapor deposition processes. In some aspects, single-walled carbon nanotubes having narrow distribution of diameters are formed by contacting a carbon precursor gas with a catalyst on a support, wherein the catalyst has an average diameter of less than about 2 nm.
摘要:
Methods and processes for synthesizing single-wall carbon nanotubes are provided. A carbon precursor gas is contacted with metal catalysts deposited on a support material. The metal catalysts are preferably nanoparticles having diameters less than about 3 nm. The reaction temperature is selected such that it is near the eutectic point of the mixture of metal catalyst particles and carbon. Further, the rate at which hydrocarbons are fed into the reactor is equivalent to the rate at which the hydrocarbons react for given synthesis temperature. The methods produce carbon single-walled nanotubes having longer lengths.
摘要:
Metal nanoparticles containing two or more metals are formed by heating or refluxing a mixture of two or more metal salts, such as a metal acetates, and a passivating solvent, such as a glycol ether, at a temperature above the melting point of the metal salts for an effective amount of time.
摘要:
Methods, processes, and apparatuses for the large scale synthesis of single-walled carbon nanotubes having small diameters are provided. Metal catalysts having small diameter and narrow distribution of particle sizes are prepared and continuously injected as aerosols into a reactor. The metal catalysts are supported on supports that are substantially free of carbon, and the reactor is configured to control the flow of the gases such that the reaction time and contact of the reactants with the reactor walls can be controlled. Single-walled carbon nanotubes can be continuously synthesized at a large scale and with high yields, and with small diameters and with narrow diameter ranges.
摘要:
Methods, processes, and apparatuses for the large scale synthesis of carbon nanostructures are provided. Metal catalysts having small diameter and narrow distribution of particle sizes are prepared and continuously injected as aerosols into a reactor. The metal catalysts are supported on supports that are substantially free of carbon. The metal catalyst, in the form of a powder, is placed in an injector that is shaken vertically. The powder is aerosolized, and the powder entrailed in the gas is passed through a conduit that is bifurcated where one portion delivers the powder to the reactor while the other portion connects back to the ejector that is located in between the gas source and the top part of the container.