摘要:
Methods are provided for the preparation of single-walled carbon nanotubes using chemical vapor deposition processes. In some aspects, single-walled carbon nanotubes having narrow distribution of diameters are formed by contacting a carbon precursor gas with a catalyst on a support, wherein the catalyst has an average diameter of less than about 2 nm.
摘要:
Methods and processes for synthesizing single-wall carbon nanotubes are provided. A carbon precursor gas is contacted with metal catalysts deposited on a support material. The metal catalysts are preferably nanoparticles having diameters less than about 3 nm. The reaction temperature is selected such that it is near the eutectic point of the mixture of metal catalyst particles and carbon. Further, the rate at which hydrocarbons are fed into the reactor is equivalent to the rate at which the hydrocarbons react for given synthesis temperature. The methods produce carbon single-walled nanotubes having longer lengths.
摘要:
Methods are provided for the preparation of single-walled carbon nanotubes using chemical vapor deposition processes. In some aspects, single-walled carbon nanotubes having narrow distribution of diameters are formed by contacting a carbon precursor gas with a catalyst on a support, wherein the catalyst has an average diameter of less than about 2 nm.
摘要:
Methods and processes for determining the particle size distribution of metal catalysts are provides. Superconducting Quantum Interference Device (SQUID) magnetometer is used to evaluate the magnetic catalyst particle sizes dispersed in the support material. Dependence on variation of the metal/support material ratio, which defines the metal particle sizes, the catalyst can show paramagnetic, superparamagnetic, and ferromagnetic behaviors.
摘要:
Methods and processes for synthesizing single-wall carbon nanotubes are provided. A carbon precursor gas is contacted with metal catalysts deposited on a support material. The metal catalysts are preferably nanoparticles having diameters less than about 3 nm. The reaction temperature is selected such that it is near the eutectic point of the mixture of metal catalyst particles and carbon. Further, the rate at which hydrocarbons are fed into the reactor is equivalent to the rate of formation of carbon SWNTs for given synthesis temperature. The methods produce carbon single-walled nanotubes having longer lengths.
摘要:
Methods and processes for preparing supported metal catalysts are provided, where the supported metal catalysts can be used for the bulk synthesis of carbon nanotubes. The salts of the metal and the support are selected such that they are soluble in the same solvent. The catalyst can be prepared from the liquid phase through joint precipitation of the metal and the support material. The methods can be used to increase the metal load on the support. Use of the catalysts increases the yield of the carbon nanotubes.
摘要:
Methods and processes for synthesizing single-wall carbon nanotubes are provided. A carbon precursor gas is contacted with metal catalysts deposited on a support material. The metal catalysts are preferably nanoparticles having diameters less than about 3 nm. The reaction temperature is selected such that it is near the eutectic point of the mixture of metal catalyst particles and carbon. Further, the rate at which hydrocarbons are fed into the reactor is equivalent to the rate of formation of carbon SWNTs for given synthesis temperature. The methods produce carbon single-walled nanotubes having longer lengths.
摘要:
Metal nanoparticles containing two or more metals are formed by heating or refluxing a mixture of two or more metal salts, such as a metal acetates, and a passivating solvent, such as a glycol ether, at a temperature above the melting point of the metal salts for an effective amount of time.
摘要:
Methods, processes, and apparatuses for the continuous synthesis of carbon nanostructures are provided. Metal catalysts having small diameter and narrow distribution of particle sizes are prepared and continuously injected as aerosols into a reactor. The metal catalysts are supported on supports that are substantially free of carbon. The metal catalyst, in the form of a powder, is placed on a fluidized bed and aerosolized using an inert gas. The powder entrailed in the gas is injected near the top of a vertical reactor for the synthesis of SWNTs.
摘要:
A method for treating carbon nanotubes with microwave energy to selective remove metallic-type carbon nanotubes is provided. A sample containing carbon nanotubes is positioned in a microwave cavity at a location corresponding to a maximum in the electric field component of a stationary wave having a microwave frequency. The sample is exposed to the microwave energy for a sufficient period of time to increase the proportion of semiconducting-type carbon nanotubes within the sample. Alternatively, a sample consisting essentially of metallic-type and semiconducting-type carbon nanotubes is exposed to microwave energy for a sufficient period of time to increase the proportion of semiconducting-type carbon nanotubes within the sample.