摘要:
Techniques for managing peak-to-average power ratio (PAPR) for multi-carrier modulation in wireless communication systems. Different terminals in a multiple-access system may have different required transmit powers. The number of carriers to allocate to each terminal is made dependent on its required transmit power. Terminals with higher required transmit powers may be allocated fewer carriers (associated with smaller PAPR) to allow the power amplifier to operate at higher power levels. Terminals with lower required transmit powers may be allocated more carriers (associated with higher PAPR) since the power amplifier is operated at lower power levels. The specific carriers to assign to the terminals may also be determined by their transmit power levels to reduce out-of-band emissions. Terminals with higher required transmit powers may be assigned with carriers near the middle of the operating band, and terminals with lower required transmit powers may be assigned with carriers near the band edges.
摘要:
To support mobile stations that are not capable of demodulating the entire bandwidth or that can be made to demodulate less than the entire bandwidth, a system, apparatus and method are provided to schedule users on less than all of the bandwidth. Further, certain users can be scheduled on more of the bandwidth than others.
摘要:
Techniques for managing peak-to-average power ratio (PAPR) for multi-carrier modulation in wireless communication systems. Different terminals in a multiple-access system may have different required transmit powers. The number of carriers to allocate to each terminal is made dependent on its required transmit power. Terminals with higher required transmit powers may be allocated fewer carriers (associated with smaller PAPR) to allow the power amplifier to operate at higher power levels. Terminals with lower required transmit powers may be allocated more carriers (associated with higher PAPR) since the power amplifier is operated at lower power levels. The specific carriers to assign to the terminals may also be determined by their transmit power levels to reduce out-of-band emissions. Terminals with higher required transmit powers may be assigned with carriers near the middle of the operating band, and terminals with lower required transmit powers may be assigned with carriers near the band edges.
摘要:
Techniques for managing peak-to-average power ratio (PAPR) for multi-carrier modulation in wireless communication systems. Different terminals in a multiple-access system may have different required transmit powers. The number of carriers to allocate to each terminal is made dependent on its required transmit power. Terminals with higher required transmit powers may be allocated fewer carriers (associated with smaller PAPR) to allow the power amplifier to operate at higher power levels. Terminals with lower required transmit powers may be allocated more carriers (associated with higher PAPR) since the power amplifier is operated at lower power levels. The specific carriers to assign to the terminals may also be determined by their transmit power levels to reduce out-of-band emissions. Terminals with higher required transmit powers may be assigned with carriers near the middle of the operating band, and terminals with lower required transmit powers may be assigned with carriers near the band edges.
摘要:
To support mobile stations that are not capable of demodulating the entire bandwidth or that can be made to demodulate less than the entire bandwidth, a system, apparatus and method are provided to schedule users on less than all of the bandwidth. Further, certain users can be scheduled on more of the bandwidth than others.
摘要:
An apparatus and method for generating an accumulated phase measurement of a communications signal over a predetermined time interval. A frequency estimate of the signal is generated; the frequency estimate is then converted to a coarse phase measurement. A phase error is generated based on the frequency estimate; the phase error is then converted to a fine phase measurement. The coarse and fine phase measurements are summed to yield an accumulated phase measurement.
摘要:
To support mobile stations that are not capable of demodulating the entire bandwidth or that can be made to demodulate less than the entire bandwidth, a system, apparatus and method are provided to schedule users on less than all of the bandwidth. Further, certain users can be scheduled on more of the bandwidth than others.
摘要:
A rate adaptive transmission scheme for MIMO systems, which can transmit a variable number of data symbol streams, provide transmit diversity for each data symbol stream, and fully utilize the total transmit power of the system and the full power of each antenna. In one method, at least one data symbol stream is received for transmission from a plurality of antennas. Each data symbol stream is scaled with a respective weight corresponding to the amount of transmit power allocated to that stream. The scaled data symbol stream(s) are multiplied with a transmit basis matrix to provide a plurality of transmit symbol streams for the plurality of antennas. The transmit basis matrix (e.g., a Walsh-Hadamard matrix or a DFT matrix) is defined such that each data symbol stream is transmitted from all antennas and each transmit symbol stream is transmitted at (or near) the full power for the associated antenna.
摘要:
To support mobile stations that are not capable of demodulating the entire bandwidth or that can be made to demodulate less than the entire bandwidth, a system, apparatus and method are provided to schedule users on less than all of the bandwidth. Further, certain users can be scheduled on more of the bandwidth than others.
摘要:
A rate adaptive transmission scheme for MIMO systems, which can transmit a variable number of data symbol streams, provide transmit diversity for each data symbol stream, and fully utilize the total transmit power of the system and the full power of each antenna. In one method, at least one data symbol stream is received for transmission from a plurality of antennas. Each data symbol stream is scaled with a respective weight corresponding to the amount of transmit power allocated to that stream. The scaled data symbol stream(s) are multiplied with a transmit basis matrix to provide a plurality of transmit symbol streams for the plurality of antennas. The transmit basis matrix (e.g., a Walsh-Hadamard matrix or a DFT matrix) is defined such that each data symbol stream is transmitted from all antennas and each transmit symbol stream is transmitted at (or near) the full power for the associated antenna.