Abstract:
The system and method for combining two optical assemblies into the same volume, particularly when the field of view of the two assemblies are different, so that the overall volume and size, weight and power (SWaP) for the system is reduced. This also allows both subsystems (e.g., narrow field of view (NFOV) and wide field of view (WFOV) to use a single aperture and the same external protective window, reducing overall cost for a system of co-located dissimilar optical systems in a single aperture.
Abstract:
A method for forming three-dimensional periodic lattice structures through the use of additive manufacturing to achieve engineered, application specific, effective material properties that differ from that of the bulk host 3d-printable material for radio frequency (RF) applications including radomes and antenna apertures. Such structures remain mechanically robust while offering access to a range of material properties not available otherwise through the engineering of detailed wave-propagation characteristics through such lattice structures.
Abstract:
The system and method for an additively manufactured radome for a cavity backed notch comprising at least one lattice structure wherein the antenna works over any 4:1 bandwidth, from VHF to mmW. In some cases, the radome lattice has a density that changes with distance from the antenna. In some cases multiple antennas are used for direction finding. The radome may be additively manufactured from glass-loaded polymer or other materials having a low dielectric constant. In some cases, the radome has a dielectric contract that approaches that of air.
Abstract:
The system and method for forming an ignition sequencer comprising two inseparable portions (a body and an armature) where an armature is articulable with respect to a body to allow for the existence of no less than two distinct stages of the ignition sequence through the articulating motion of the additively-manufactured armature. The ignition sequencer assembly architecture allows for installation of an internal energetic compound while all components are assembled and interconnected. The ignition sequencer assembly architecture allows for installation into a next higher-level assembly using a single, uniaxial, force.
Abstract:
A two-part fiber optic collimator has a precision adjuster for controlling the position of a spring-biased lens carrier with respect to the collimator's body. An interchangeable fiber optic connector adaptor is attached to the collimator body for accurately positioning the end of a fiber optic cable in the collimator.
Abstract:
The system and method for combining two optical assemblies into the same volume, particularly when the field of view of the two assemblies are different, so that the overall volume and swap for the system is reduced. This also allows both subsystems to use the same external protective window, reducing overall cost for a system of co-located dissimilar optical systems in a single aperture.
Abstract:
An athermal locking mechanism apparatus for large optic mounts is disclosed. The apparatus comprises at least one locking nut, at least one flexurized spring collet attached to a rigid base structure, a pivot shaft engaged with an optical yolk on a rotational axis of symmetry and a plurality of threads that joins the locking nuts with the flexurized spring collet The threads provide an increased level of a radial clamping force onto the pivot shaft. The interference generated between the locking nut and the spring collet causes all flexures to squeeze down onto the shaft, applying a purely symmetric radial force during the locking process. This eliminates any induced rotational torque and prevents the optical element from moving during the locking process after being properly aligned.