Abstract:
A drilling assembly is tripped in a cased hole to make more open hole. The assembly features retracted scrapers and a closed circulation sub so that the drilling can commence with string pressure delivered to bit nozzles due to the circulation sub being in a closed position. When drilling is done and the bit is to be removed, an object lands on a seat on a sleeve that acts as a piston to break scraper retainers for casing scraping deployment and to open the circulation port. A bypass opens around the seated ball when the sleeve shifts to allow flow around the seated ball for circulation while scraping. Drilling and casing scraping are accomplished in a single trip.
Abstract:
A tubular string is run into a wellbore with a remotely actuated valve near a lower end adjacent a cementing shoe. The valve is triggered to operate without intervention such as by mud pulses generated at the surface and recognized by a sensor linked to a processor adjacent the valve to trigger the valve to close. Alternative actuation systems are envisioned for the valve that is located near the cementing shoe.
Abstract:
A downhole tool for removing debris from fluid flowing through the downhole tool uses a screen member and wiper member, the wiper member having at least one window disposed through the inner and outer wall surfaces of the wiper member. Either the screen member or the wiper member is rotatable such that rotation of the screen member or the wiper member causes debris disposed on the outer wall surface of the screen member to fall-off the screen member. At least one direction port disposed at either the upper end of the screen member or the upper end of the wiper member causes rotation of the screen member or wiper member when fluid flows through the downhole tool.
Abstract:
A downhole tool for removing debris from a wellbore comprises a mandrel and a shroud disposed around a portion of the mandrel. The mandrel includes at least one mandrel port in fluid communication with a mandrel bore. The shroud includes a cavity and a shroud port. Debris laden fluid is pulled into the shroud cavity by flowing fluid through the mandrel bore, out the mandrel port, into the shroud cavity, and through the shroud port. The debris-laden fluid is pulled into the shroud cavity due to a pressure differential created by the flow of the fluid through the mandrel port and out of the shroud port. As the debris laden fluid flows into the shroud cavity, the debris is captured within the tool.
Abstract:
A downhole tool for removing debris from a wellbore comprises a mandrel and a shroud disposed around a portion of the mandrel. The mandrel includes at least one mandrel port in fluid communication with a mandrel bore. The shroud includes a cavity and a shroud port. Debris laden fluid is pulled into the shroud cavity by flowing fluid through the mandrel bore, out the mandrel port, into the shroud cavity, and through the shroud port. The debris-laden fluid is pulled into the shroud cavity due to a pressure differential created by the flow of the fluid through the mandrel port and out of the shroud port. As the debris laden fluid flows into the shroud cavity, the debris is captured within the tool.
Abstract:
A valve and method of use wherein the valve includes a housing having an axial flowbore defined along its length. A lateral fluid flow port is disposed through the housing. A piston sleeve is disposed within the flowbore and is selectively moveable to block flow through the lateral flow port. The valve can be moved between operating positions wherein flow through the lateral flow port is blocked or allowed and axial flow through the flowbore is blocked or permitted.
Abstract:
A downhole tool for removing debris from fluid flowing through the downhole tool comprises a screen member and wiper member, the wiper member having at least one window disposed through the inner and outer wall surfaces of the wiper member. Either the screen member or the wiper member is rotatable such that rotation of the screen member or the wiper member causes debris disposed on the outer wall surface of the screen member to fall-off the screen member. At least one directional port disposed at either the upper end of the screen member or the upper end of the wiper member causes rotation of the screen member or wiper member when fluid flows through the downhole tool.
Abstract:
A test packer is lowered to a set liner hanger in a locked position that prevents the seal and slips from setting during running in. A first ball is dropped to shift a sleeve to release the grip of dogs to a groove on an outer housing. Setting down weight sets the test packer seal and sets the slips. After the casing integrity pressure test is done the test packer is lifted to again position the groove in the outer housing by the dogs. A second ball lands on the same seat now enlarged due to earlier movement and breaks a retainer on a locking sleeve. A spring return or continued downhole motion of the locking sleeve locks the packer in the run in position. Subsequent rotation and circulation can take place as completion fluid is circulated in. A circulation port above the packer can be opened optionally for circulation or reversing above the test packer.
Abstract:
A test packer is lowered to a set liner hanger in a locked position that prevents the seal and slips from setting during running in. A first ball is dropped to shift a sleeve to release the grip of dogs to a groove on an outer housing. Setting down weight sets the test packer seal and sets the slips. After the casing integrity pressure test is done the test packer is lifted to again position the groove in the outer housing by the dogs. A second ball lands on the same seat now enlarged due to earlier movement and breaks a retainer on a locking sleeve. A spring return or continued downhole motion of the locking sleeve locks the packer in the run in position. Subsequent rotation and circulation can take place as completion fluid is circulated in. A circulation port above the packer can be opened optionally for circulation or reversing above the test packer.
Abstract:
A valve and method of use wherein the valve includes a housing having an axial flowbore defined along its length. A lateral fluid flow port is disposed through the housing. A piston sleeve is disposed within the flowbore and is selectively moveable to block flow through the lateral flow port. The valve can be moved between operating positions wherein flow through the lateral flow port is blocked or allowed and axial flow through the flowbore is blocked or permitted.