Abstract:
An apparatus and method is discussed for characterizing a fluid sample downhole of aliphatic hydrocarbon compounds, aromatic hydrocarbon compound, or connate mud filtrates containing carbon-13 isotopes using an enhanced nuclear magnetic resonance (NMR) signal on a measurement-while-drilling device. To enhance the carbon-13 NMR signal these nuclei are being hyperpolarized. Either the Overhauser Effect (OE) or the Nuclear Overhauser Effect or optical pumping and the Spin Polarization Induced Nuclear Overhauser Effect (SPINOE) can serve as a mechanism for hyperpolarization of the carbon-13 nuclei.
Abstract:
A loop-gap resonator for providing an excitation pulse in a down hole nuclear magnetic resonating (NMR) tool for determining a parameter of interest in a formation adjacent a borehole. The loop-gap resonator is constructed having one or more capacitive gaps formed in a nonmagnetic conductive loop. The loop-gap resonator may be deployed down a bore in a measurement while drilling (MWD) configuration or in a wire line configuration. The MWD configuration may utilize a non-rotating sleeve rotationally associated with the drill string.
Abstract:
The present invention provides a novel use of a material having a high internal magnetostrictive damping and/ or using material with explicitly low magnetostriction as a NMR probe core material. The probe structural geometry facilitates the use of material, which has a relatively low magnetic permeability.
Abstract:
A slotted NMR antenna cover for improved mechanical ruggedness during transmission and reception of NMR signals in a down hole environment during either MWD or wire line operations. A NMR slotted antenna cover is provided comprising an elongated tubular structure with longitudinal gaps or slots filled with a RF transmissive or non-conductive material. The slots can befilled at the slot ends with soft magnetic material to improve efficiency of the antenna. The slots are radial concave to reduce eddy currents induced by alternating magnetic flux entering and leaving the slots surrounding the antenna. In another embodiment, the antenna cover is RF transmissive on only a portion of the antenna, via slots or transmissive material, so that the antenna cover can be used to allow RF transmission from the antenna in a side looking or beam pattern restricted mode only.
Abstract:
NMR data are acquired with variable spacing between refocusing pulses, giving data with a variable interecho time TE. Under certain conditions, diffusion effects can be neglected and data acquired with a multiple TE spacing may be used to obtain a T2 distribution with increased resolution and reduced power requirements. In gas reservoirs, the maximum TE may be determined from diffusion considerations using a dual wait time pulse sequence and this maximum TE is used to acquire data with dual TE. By proper selection of TE, echos can be obtained with significantly reduced ringing.
Abstract:
A NMR device is presented that includes a drill collar having non-rotating sleeve containing permanent magnets. The non-rotating sleeve is clamped against a borehole wall and decoupled from drilling vibrations during NMR measurements. The transmitter and receiver are located on the rotating part of the drill collar. Alternatively the permanent magnets and the RF receiver antenna and/or receiver electronics are placed on the non-rotating sleeve which is clamped against the borehole wall and decoupled from drilling vibrations, with the transmitting antenna located on the rotating drill collar. Alternatively a non-rotating stabilizer is provided above or below a NMR sensor. A stabilizer is activated to stabilize the rotating NMR sensor located on the drilling collar in the bore hole. The permanent magnets and receiving and transmitting antennas are located on a non-rotating sleeve that is clamped against the borehole wall to decouple the permanent magnets and receiving and transmitting antennas from drilling vibrations.