Abstract:
Formation testing, resistivity and NMR measurements are used concurrently to determine a relative permeability representative of a formation surrounding the borehole. A method and apparatus is provided for accurate determination of the relative permeability for a formation by measuring saturation levels in a region of interest determined from resistivity or NMR readings versus time during formation draw down pressure testing. The method and apparatus determines and effective permeability over time for various saturation levels to determine the relative permeability for the formation at each saturation level and also enables determination of the efficacy of utilizing completion fluids in the formation to increase formation productivity. The method and apparatus enables more accurate determination of effective permeability and the irreducible saturation level. The method and apparatus also provides for determination of whether a pad is sealed properly against a borehole wall and determines if a probe is clogged.
Abstract:
The present invention provides a drilling assembly for drilling deviated wellbores. The drilling assembly includes a drill bit at the lower end of the drilling assembly. A drilling motor provides the rotary power to the drill bit. A bearing assembly of the drilling motor provides lateral and axial support to the drill shaft connected to the drill bit. A steering device is integrated into drilling motor assembly. The steering device contains a plurality of force application members disposed at an outer surface of the drilling motor assembly Each force application member is adapted to move between a normal position and a radially extended position to exert force on the wellbore interior wherein in extended position. A power unit in the housing provides pressurized fluid to the force application members. A control device for independently operating each of the force application members is disposed in the drilling motor assembly. A control circuit or unit independently controls the operation of the control device to independently control each force application member. For short radius drilling, a knuckle joint is disposed uphole of the steering device to provide a bend in the drilling assembly. During drilling of a wellbore, the force application members are operated to adjust the force on the wellbore to drill the wellbore in the desired direction.
Abstract:
A system for controlling sensor motion during a time-dependent measurement, comprising a drilling assembly having a drill bit at one end and engaged with a drill string extending to a surface location at an opposite end thereof. A sensor is disposed in the drilling assembly for making a measurement of a formation parameter of interest. A non-rotating stabilizer is disposed in the drilling assembly proximate the sensor. The non-rotating stabilizer is adapted to reduce motion of the sensor below a predetermined level during the measurement. In one embodiment the rotational axis of the stabilizer is eccentric with respect to the borehole. In another embodiment, the non-rotating stabilizer has an extendable rib for changing the effective diameter of the stabilizer.
Abstract:
An MWD method and apparatus for determining parameters of interest in a formation has a sensor assembly mounted on a slidable sleeve slidably coupled to a longitudinal member, such as a section of drill pipe. When the sensor assembly is held in a non-rotating position, for instance for obtaining the measurements, the longitudinal member is free to rotate and continue drilling the borehole, wherein downhole measurements can be obtained with substantially no sensor movement or vibration. This is particularly useful in making NMR measurements due to their susceptibility to errors due caused by tool vibration. In addition, the substantially non-rotating arrangement of sensors makes it possible to efficiently carry out VSPs, reverse VSPs and looking ahead of the drill bit. A clamping device is used, for instance, to hold the sensor assembly is held in the non-rotating position. The sensor assembly of the present invention can include any of a variety of sensors and/or transmitters for determining a plurality of parameters of interest including, for example, nuclear magnetic resonance measurements.
Abstract:
Nuclear magnetic resonance measurement of a medium are made using a tool with a static magnetic field having a gradient. The nuclear spins of the medium are magnetically polarized using the static magnetic field. Data are acquired from at least three sensitive volumes of the medium using an interleaved sequence of pulses at three different non-overlapping frequencies. At each frequency, a number of sub-sequences of a saturation pulse, a recovery pulse and at least one refocusing pulse are used. The saturation times between the saturation pulse and the recovery pulse for the sub-sequences are selected from a distribution of values between a minimum time to a maximum time to enable determination of T1 and T2 spectra over a wide range of values. Repetitions of sub-sequences having the same saturation at one or more frequencies may be carried out with phase alternation of the recovery pulse phases.
Abstract:
An MWD method and apparatus for determining parameters of interest in a formation has a sensor assembly mounted on a slidable sleeve slidably coupled to a longitudinal member, such as a section of drill pipe. When the sensor assembly is held in a non-rotating position, for instance for obtaining the measurements, the longitudinal member is free to rotate and continue drilling the borehole, wherein downhole measurements can be obtained with substantially no sensor movement or vibration. This is particularly useful in making NMR measurements due to their susceptibility to errors due caused by tool vibration. In addition, the substantially non-rotating arrangement of sensors makes it possible to efficiently carry out VSPs, reverse VSPs and looking ahead of the drill bit. A clamping device is used, for instance, to hold the sensor assembly is held in the non-rotating position. The sensor assembly of the present invention can include any of a variety of sensors and/or transmitters for determining a plurality of parameters of interest including, for example, nuclear magnetic resonance measurements.
Abstract:
An expert system is included in a downhole processor designed to acquire and process NMR data downhole in real time. The downhole processor controls the acquisition of the NMR data based at least in part on instructions transmitted downhole from a surface location and at least in part on evaluation of downhole conditions by the expert system. The downhole conditions include drilling operation conditions (including motion sensors) as well as lithology and fluid content of the formation obtained from other MWD data. The wait time, number of echos, number of repetitions of an echo sequence, interecho time, bandwidth and shape of the tipping and refocusing pulses may be dynamically changed. Data processing is a combination of standard evaluation techniques. Selected data and diagnostics are transmitted uphole. The expert system may be implemented as a two stage neural net. The first stage does the formation evaluation and the second stage controls the NMR pulse sequence.
Abstract:
A slotted NMR antenna cover for improved mechanical ruggedness during transmission and reception of NMR signals in a down hole environment during either MWD or wire line operations. A NMR slotted antenna cover is provided comprising an elongated tubular structure with longitudinal gaps or slots filled with a RF transmissive or non-conductive material. The slots can befilled at the slot ends with soft magnetic material to improve efficiency of the antenna. The slots are radial concave to reduce eddy currents induced by alternating magnetic flux entering and leaving the slots surrounding the antenna. In another embodiment, the antenna cover is RF transmissive on only a portion of the antenna, via slots or transmissive material, so that the antenna cover can be used to allow RF transmission from the antenna in a side looking or beam pattern restricted mode only.
Abstract:
NMR data are acquired with variable spacing between refocusing pulses, giving data with a variable interecho time TE. Under certain conditions, diffusion effects can be neglected and data acquired with a multiple TE spacing may be used to obtain a T2 distribution with increased resolution and reduced power requirements. In gas reservoirs, the maximum TE may be determined from diffusion considerations using a dual wait time pulse sequence and this maximum TE is used to acquire data with dual TE. By proper selection of TE, echos can be obtained with significantly reduced ringing.
Abstract:
A NMR device is presented that includes a drill collar having non-rotating sleeve containing permanent magnets. The non-rotating sleeve is clamped against a borehole wall and decoupled from drilling vibrations during NMR measurements. The transmitter and receiver are located on the rotating part of the drill collar. Alternatively the permanent magnets and the RF receiver antenna and/or receiver electronics are placed on the non-rotating sleeve which is clamped against the borehole wall and decoupled from drilling vibrations, with the transmitting antenna located on the rotating drill collar. Alternatively a non-rotating stabilizer is provided above or below a NMR sensor. A stabilizer is activated to stabilize the rotating NMR sensor located on the drilling collar in the bore hole. The permanent magnets and receiving and transmitting antennas are located on a non-rotating sleeve that is clamped against the borehole wall to decouple the permanent magnets and receiving and transmitting antennas from drilling vibrations.