Abstract:
A gas-phase polymerization reactor for the gas-phase polymerization of olefins including a polymerization zone having a recycle line for (a) withdrawing reaction gas from the reactor, (b) leading the reaction gas through a heat-exchanger for cooling, and (c) feeding the reaction gas back to the reactor, wherein the recycle line has the heat-exchanger, a centrifugal compressor having variable guide vanes, and a butterfly valve, and a related process for preparing an olefin polymer in the gas-phase polymerization reactor.
Abstract:
Process for treating polyolefin particles obtained by gas-phase polymerization of one or more olefins in the presence of a polymerization catalyst system and a C3-C5 alkane as polymerization diluent in a gas-phase polymerization reactor, the process comprising the steps of a) discharging the polyolefin particles continuously or discontinuously from the gas-phase polymerization reactor and transferring the particles to a first degassing vessel; b) contacting therein the polyolefin particles with a gaseous stream comprising at least 85 mol-% of C3-C5 alkane while the polyolefin particles have an average residence time in the first degassing vessel of from 5 minutes to 5 hours; c) transferring the polyolefin particles to a second degassing vessel; d) contacting therein the polyolefin particles with a stream comprising nitrogen and steam while the polyolefin particles have an average residence time in the second degassing vessel of from 5 minutes to 2 hours, wherein the contacting is carried out at conditions under which no condensation of water occurs; e) transferring the polyolefin particles to a third degassing vessel; f) contacting therein the polyolefin particles with a stream of nitrogen while the polyolefin particles have an average residence time in the third degassing vessel of from 5 minutes to 8 hours, and processes for preparing polyolefin polymers by gas-phase polymerization of one or more olefins in the presence of a polymerization catalyst system and a C3-C5 alkane as polymerization diluent in a gas-phase polymerization reactor, wherein the obtained polyolefin particles are subjected to such a treating process.
Abstract:
A gas-phase polymerization reactor for the gas-phase polymerization of olefins including a polymerization zone having a recycle line for (a) withdrawing reaction gas from the reactor, (b) leading the reaction gas through a heat-exchanger for cooling, and (c) feeding the reaction gas back to the reactor, wherein the recycle line has the heat-exchanger, a centrifugal compressor having variable guide vanes, and a butterfly valve, and a related process for preparing an olefin polymer in the gas-phase polymerization reactor.
Abstract:
The present technology relates to a process for polymerizing or copolymerizing ethylenically unsaturated monomers in the presence of free-radical polymerization initiators, wherein the polymerization is carried out in a continuously operated tubular reactor at temperatures from 100° C. to 350° C. and pressures from 180 MPa to 340 MPa, with a specific reactor surface area Asp of 2 m2/(t/h) to 5.5 m2/(t/h), and the tubular reactor has a specific ratio RDsp of 0.0050 MPa−1 to 0.0069 MPa−1 and an inner surface which has a surface roughness Ra of 2 μm or less.
Abstract:
The present technology relates to a process for polymerizing or copolymerizing ethylenically unsaturated monomers in the presence of free-radical polymerization initiators, wherein the polymerization is carried out in a continuously operated tubular reactor at temperatures from 100° C. to 350° C. and pressures from 180 MPa to 340 MPa, with a specific reactor surface area Asp of 2 m2/(t/h) to 5.5 m2/(t/h), and the tubular reactor has a specific ratio RDsp of 0.0050 MPa−1 to 0.0069 MPa−1 and an inner surface which has a surface roughness Ra of 2 μm or less.
Abstract:
The present technology relates to a process for polymerizing or copolymerizing ethylenically unsaturated monomers in the presence of free-radical polymerization initiators, wherein the polymerization is carried out in a continuously operated tubular reactor at temperatures from 100° C. to 350° C. and pressures from 180 MPa to 340 MPa, with a specific reactor surface area Asp of 2 m2/(t/h) to 5.5 m2/(t/h), and the tubular reactor has a specific ratio RDsp of 0.0050 MPa−1 to 0.0069 MPa−1 and an inner surface which has a surface roughness Ra of 2 μm or less.
Abstract:
Process for treating polyolefin particles obtained by gas-phase polymerization of one or more olefins in the presence of a polymerization catalyst system and a C3-C5 alkane as polymerization diluent in a gas-phase polymerization reactor, the process comprising the steps of a) discharging the polyolefin particles continuously or discontinuously from the gas-phase polymerization reactor and transferring the particles to a first degassing vessel; b) contacting therein the polyolefin particles with a gaseous stream comprising at least 85 mol-% of C3-C5 alkane while the polyolefin particles have an average residence time in the first degassing vessel of from 5 minutes to 5 hours; c) transferring the polyolefin particles to a second degassing vessel; d) contacting therein the polyolefin particles with a stream comprising nitrogen and steam while the polyolefin particles have an average residence time in the second degassing vessel of from 5 minutes to 2 hours, wherein the contacting is carried out at conditions under which no condensation of water occurs; e) transferring the polyolefin particles to a third degassing vessel; f) contacting therein the polyolefin particles with a stream of nitrogen while the polyolefin particles have an average residence time in the third degassing vessel of from 5 minutes to 8 hours, and processes for preparing polyolefin polymers by gas-phase polymerization of one or more olefins in the presence of a polymerization catalyst system and a C3-C5 alkane as polymerization diluent in a gas-phase polymerization reactor, wherein the obtained polyolefin particles are subjected to such a treating process.
Abstract:
A process for polymerizing ethylene in a high-pressure polymerization system having a continuously operated polymerization reactor and a reactor blow down system having an emergency valve, a reactor blow down vessel containing an aqueous medium and a reactor blow down dump vessel, wherein the process includes the steps of monitoring the polymerization system for a disturbance, opening the emergency valve when a disturbance occurs to allow the content of the polymerization system to expand into the reactor blow down vessel, contacting the content of the polymerization system in the reactor blow down vessel with the aqueous medium to obtain an aqueous polymer slurry, separating the polymer slurry and gaseous components, and transferring the polymer slurry to the reactor blow down dump vessel.
Abstract:
Method for the preparation of dried polymer pellets in a facility having a dryer with a first chamber and a mechanical agitator, and the facility further having a degassing silo with a second chamber, the method includes the steps of guiding a drying gas flow made from or containing a first gas mixture for drying wet polymer pellets into the first chamber, transferring the dried polymer pellets into the second chamber, guiding a second gas mixture for degassing the dried polymer pellets into the second chamber thereby transforming the second gas mixture into a third gas mixture and guiding a portion of the third gas mixture into the first chamber; and process for manufacturing LDPE pellets.
Abstract:
A process for polymerizing ethylene in a high-pressure polymerization system having a continuously operated polymerization reactor and a reactor blow down system having an emergency valve, a reactor blow down vessel containing an aqueous medium and a reactor blow down dump vessel, wherein the process includes the steps of monitoring the polymerization system for a disturbance, opening the emergency valve when a disturbance occurs to allow the content of the polymerization system to expand into the reactor blow down vessel, contacting the content of the polymerization system in the reactor blow down vessel with the aqueous medium to obtain an aqueous polymer slurry, separating the polymer slurry and gaseous components, and transferring the polymer slurry to the reactor blow down dump vessel.