Abstract:
The present invention relates to a process for isomerizing at least one hydrocarbon in the presence of an acidic ionic liquid and at least one hydrogen halide (HX) in an apparatus (V1), wherein the hydrogen halide (HX) is removed in an apparatus (V2) in gaseous form from the isomerization product and is at least partly recycled into apparatus (V1).
Abstract:
The present invention relates to a process for preparing cyclohexane from benzene and/or methylcyclopentane (MCP) by hydrogenation or isomerization. Prior to the cyclohexane preparation, the dimethylpentanes (DMP) are removed in a distillation apparatus (D1) from a hydrocarbon mixture (HM1) comprising not only benzene and/or MCP but also DMP. If cyclohexane is already present in the hydrocarbon mixture (HM1), this cyclohexane is first removed together with DMP from benzene and/or MCP. This cyclohexane already present can be separated again from DMP in a downstream distillation step and recycled into the process for cyclohexane preparation.
Abstract:
The present invention relates to a chemical conversion process, preferably an isomerization process, for at least one hydrocarbon in the presence of an ionic liquid. The chemical conversion is performed in a dispersion, with dispersion of the hydrocarbon (phase (B)) in the ionic liquid (phase (A)) in the dispersion, the volume ratio of phase (A) to phase (B) being in the range from 2.5 to 4:1 [vol/vol].
Abstract:
The present invention relates to a process for hydrocarbon conversion in the presence of an acidic ionic liquid. The hydrocarbon conversion is preferably an isomerization, especially an isomerization of methylcyclopentane (MOP) to cyclohexane. Prior to the hydrocarbon conversion, a hydrogenation is performed, preference being given to hydrogenating benzene to cyclohexane. The cyclohexane obtained in the hydrogenation and/or isomerization is preferably isolated from the process. In a preferred embodiment of the present invention, the hydrogenation is followed and the hydrocarbon conversion, especially the isomerization, is preceded by distillative removal of low boilers, especially C5-C6-alkanes such as cyclopentane or isohexanes, from the hydrocarbon mixture used for hydrocarbon conversion.
Abstract:
The present invention relates to a process for treating an output from a hydrocarbon conversion, wherein the hydrocarbon conversion is performed in the presence of an acidic ionic liquid. The hydrocarbon conversion is preferably an isomerization. First of all, the hydrogen halide is drawn off in an apparatus from a mixture which originates from the hydrocarbon conversion and comprises at least one hydrocarbon and at least one hydrogen halide, and then the mixture depleted of hydrogen halide is subjected to a wash.
Abstract:
The present invention relates to a chemical conversion process, preferably an isomerization process, for at least one hydrocarbon in the presence of an ionic liquid. The chemical conversion is performed in a dispersion, with dispersion of the hydrocarbon (phase (B)) in the ionic liquid (phase (A)) in the dispersion, the volume ratio of phase (A) to phase (B) being in the range from 2.5 to 4:1 [vol/vol].
Abstract:
The present invention relates to a process for preparing cyclohexane by isomerizing a hydrocarbon mixture (HM1) comprising methylcyclopentane (MCP) in the presence of a catalyst. The catalyst is preferably an acidic ionic liquid. The starting material used is a stream (S1) which originates from a steamcracking process. The hydrocarbon mixture (HM1) obtained from this stream (S1) in an apparatus for aromatics removal has a reduced aromatics content compared to stream (S1), and (HM1) may optionally also be (virtually) free of aromatics. Depending on the type and amount of the aromatics remaining in the hydrocarbon mixture (HM1), especially in the case that benzene is present, the isomerization may additionally be preceded by performance of a hydrogenation of (HM1). In addition, depending on the presence of other components of (HM1), further purification steps may optionally be performed prior to or after the isomerization or hydrogenation. High-purity (on-spec) cyclohexane is preferably isolated from the hydrocarbon mixture (HM2) obtained in the isomerization, the specifications being, for example, those applicable to the use of the cyclohexane for the preparation, known to those skilled in the art, of caprolactam.
Abstract:
The present invention relates to a chemical reaction process, preferably an isomerization process, of at least one hydrocarbon in the presence of an ionic liquid and a hydrogen halide (HX). The chemical reaction is carried out in an apparatus (V1) in which a gas phase is in direct contact with a liquid reaction mixture. The gas phase and the liquid reaction mixture each comprise the hydrogen halide and the liquid reaction mixture additionally comprises at least one hydrocarbon and the ionic liquid. Gaseous HX is introduced into the apparatus (V1) in such a way that the hydrogen halide partial pressure is kept constant in the gas phase. The ionic liquid used in the respective chemical reaction, in particular in an isomerization, can (inter alia) be regenerated by the process of the invention.
Abstract:
The present invention relates to a process for preparing cyclohexane by isomerizing a hydrocarbon mixture (HM1) comprising methylcyclopentane (MCP) in the presence of a catalyst. The catalyst is preferably an acidic ionic liquid. The starting material used is a stream (S1) which originates from a steamcracking process. The hydrocarbon mixture (HM1) obtained from this stream (S1) in an apparatus for aromatics removal has a reduced aromatics content compared to stream (S1), and (HM1) may optionally also be (virtually) free of aromatics. Depending on the type and amount of the aromatics remaining in the hydrocarbon mixture (HM1), especially in the case that benzene is present, the isomerization may additionally be preceded by performance of a hydrogenation of (HM1). In addition, depending on the presence of other components of (HM1), further purification steps may optionally be performed prior to or after the isomerization or hydrogenation. High-purity (on-spec) cyclohexane is preferably isolated from the hydrocarbon mixture (HM2) obtained in the isomerization, the specifications being, for example, those applicable to the use of the cyclohexane for the preparation, known to those skilled in the art, of caprolactam.