Abstract:
A process for separating a phase (A) comprising at least one ionic liquid from a phase (B), where phase (A) has a higher viscosity than phase (B), comprising: a) providing a stream (S1) comprising a dispersion (D1) in which phase (A) is dispersed in phase (B), b) introducing stream (S1) into a coalescing device (KV), where the inflow rate of stream (S1) is from 0.05 to 150 kg/(cm2*h) based on the average cross-sectional area of coalescing device (KV), wherein the packing density of coalescing device (KV) is from 50 to 500 kg/m3, separating phase (A) from phase (B) in coalescing device (KV), discharging a stream (S2) comprising at least 70% by weight of phase (A) from coalescing device (KV) and discharging a stream (S3) comprising at least 70% by weight of phase (B) from coalescing device (KV).
Abstract:
The present invention relates to a chemical conversion process, preferably an isomerization process, for at least one hydrocarbon in the presence of an ionic liquid. The chemical conversion is performed in a dispersion, with dispersion of the hydrocarbon (phase (B)) in the ionic liquid (phase (A)) in the dispersion, the volume ratio of phase (A) to phase (B) being in the range from 2.5 to 4:1 [vol/vol].
Abstract:
A process for separating water from pyrolysis gasoline obtained from a steam cracking step uses a coalescer for the water separation. And a device comprises a coalescer for water separation from pyrolysis gasoline.
Abstract:
The present invention relates to an extraction column 1 having a vertically aligned column body 2 which is cylindrical at least in sections and forms a column cavity 3 having a horizontal maximum extent, with provision in the column body 2 of at least one first feed 4 for an extractant, at least one second feed 5 for the fluid to be extracted and at least one outlet 6 for the extract mixture and at least one outlet for the raffinate. In the inventive extraction column 1, a vertically aligned divider 7 arranged within the column cavity 3 subdivides the column cavity 3 into a plurality of vertically aligned and horizontally divided regions, the horizontal maximum extent of each region being less than the horizontal maximum extent of the column cavity 3. The invention further relates to a process for extracting a constituent from a fluid by means of such an extraction column 1.
Abstract:
The present invention relates to a process for preparing cyclohexane from methylcyclopentane (MCP) and benzene. In the context of the present invention, MCP and benzene are constituents of a hydrocarbon mixture (HM1) additionally comprising dimethylpentanes (DMP), possibly cyclohexane and at least one compound (low boiler) selected from acyclic C5-C6-alkanes and cyclopentane. First of all, benzene is converted in a hydrogenation step to cyclohexane, while MCP is isomerized in the presence of a catalyst, preferably of an acidic ionic liquid, to cyclohexane. The hydrogenation is preceded by a prior removal of the dimethylpentanes (DMP), with initial removal of any cyclohexane present in the hydrocarbon mixture (HM1) together with DMP. This cyclohexane already present can be separated again from DMP in a downstream rectification step and recycled into the process for cyclohexane preparation. Between hydrogenation and isomerization, low boilers are removed and, after the isomerization, the cyclohexane is isolated with return of unisomerized MCP and optionally of low boilers.
Abstract:
The present invention relates to a process for separating a phase (A) comprising at least one ionic liquid from a phase (B), phase (A) having a higher viscosity than phase (B), comprising the following steps: a) providing a stream (S1) comprising a dispersion (D1) in which phase (A) is dispersed in phase (B), b) introducing stream (S1) into a phase separation unit (PT1) comprising a knitted fabric, preferably a knitted glass fiber fabric, c) separating the dispersed phase (A) from phase (B) in the phase separation unit (PT1), d) discharging a stream (S2) comprising at least 70% by weight, preferably at least 90% by weight, of phase (A) from the phase separation unit (PT1), and e) discharging a stream (S3) comprising at least 70% by weight, preferably at least 90% by weight, of phase (B) from the phase separation unit (PT1).
Abstract:
The present invention relates to a process for separating a phase (A) from a phase (B), phase (A) having a higher viscosity than phase (B), by inverting the direction of dispersion from phase (B) in phase (A) to phase (A) in phase (B) by recycling a stream comprising phase (B) in excess.
Abstract:
The present invention relates to a process for separating a phase (A) comprising at least one ionic liquid from a phase (B), phase (A) having a higher viscosity than phase (B), comprising the following steps: a) providing a stream (S1) comprising a dispersion (D1) in which phase (A) is dispersed in phase (B), b) introducing stream (S1) into a coalescing filter (K) manufactured from acrylic/phenolic resin, c) separating the dispersed phase (A) from phase (B) in the coalescing filter (K), d) discharging a stream (S2) comprising at least 70% by weight, preferably at least 90% by weight, of phase (A) from the coalescing filter (K), and e) discharging a stream (S3) comprising at least 70% by weight, preferably at least 90% by weight, of phase (B) from the coalescing filter (K).
Abstract:
The present invention relates to a process for treating an output from a hydrocarbon conversion, wherein the hydrocarbon conversion is performed in the presence of an acidic ionic liquid. The hydrocarbon conversion is preferably an isomerization. First of all, the hydrogen halide is drawn off in an apparatus from a mixture which originates from the hydrocarbon conversion and comprises at least one hydrocarbon and at least one hydrogen halide, and then the mixture depleted of hydrogen halide is subjected to a wash.
Abstract:
The present invention relates to a process for separating a phase (A) comprising at least one ionic liquid from a phase (B), phase (A) having a higher viscosity than phase (B), comprising the following steps: a) providing a stream (S1) comprising a dispersion (D1) in which phase (A) is dispersed in phase (B), b) introducing stream (S1) into a coalescing filter (K) manufactured from acrylic/phenolic resin, c) separating the dispersed phase (A) from phase (B) in the coalescing filter (K), d) discharging a stream (S2) comprising at least 70% by weight, preferably at least 90% by weight, of phase (A) from the coalescing filter (K), and e) discharging a stream (S3) comprising at least 70% by weight, preferably at least 90% by weight, of phase (B) from the coalescing filter (K).