Abstract:
According to the invention, storage stability in terms of cellulolytic activity is to be improved in a liquid washing or cleaning agent which comprises a protease and cellulase. This is achieved by the use of a protease which comprises an amino acid sequence which is at least 80% identical to the amino acid sequence specified in SEQ ID NO. 1 and which has the amino acid glutamic acid (E) or aspartic acid (D) or the amino acid asparagine (N) or glutamine (Q) or the amino acid alanine (A) or glycine (G) or serine (S) at position 99 in the count according to SEQ ID NO. 1.
Abstract:
According to the invention, storage stability in terms of cellulolytic activity is to be improved in a liquid washing or cleaning agent which comprises a protease and cellulase. This is achieved by the use of a protease which comprises an amino acid sequence which is at least 80% identical to the amino acid sequence specified in SEQ ID NO. 1 and which has the amino acid glutamic acid (E) or aspartic acid (D) or the amino acid asparagine (N) or glutamine (Q) or the amino acid alanine (A) or glycine (G) or serine (S) at position 99 in the count according to SEQ ID NO. 1.
Abstract:
The object is to improve the storage stability of a liquid washing or cleaning agent comprising a protease and lipase with regard to lipolytic activity. This is achieved through the use of a protease comprising an amino acid sequence that is at least 80% identical to the amino acid sequence set out in SEQ ID NO. 1 and that has the amino acid glutamic acid (E) or aspartic acid (D) or the amino acid asparagine (N) or glutamine (Q) or the amino acid alanine (A) or glycine (G) or serine (S) at position 99 in the sequence corresponding to SEQ ID NO. 1.
Abstract:
The object is to improve the storage stability of a liquid washing or cleaning agent comprising a protease and lipase with regard to lipolytic activity. This is achieved through the use of a protease comprising an amino acid sequence that is at least 80% identical to the amino acid sequence set out in SEQ ID NO. 1 and that has the amino acid glutamic acid (E) or aspartic acid (D) or the amino acid asparagine (N) or glutamine (Q) or the amino acid alanine (A) or glycine (G) or serine (S) at position 99 in the sequence corresponding to SEQ ID NO. 1.
Abstract:
According to the invention, storage stability in terms of amylolytic activity is to be improved in a liquid washing or cleaning agent which comprises a protease and amylase. This is achieved by the use of a protease which comprises an amino acid sequence which is at least 80% identical to the amino acid sequence specified in SEQ ID NO. 1 and which has the amino acid glutamic acid (E) or aspartic acid (D) or the amino acid asparagine (N) or glutamine (Q) or the amino acid alanine (A) or glycine (G) or serine (S) at position 99 in the count according to SEQ ID NO. 1.
Abstract:
The present invention relates to α-amylase variants that are stabilized to dimerization and/or multimerization, in particular at elevated temperatures or high pH, by point mutagenesis of positively polarized or charged or neutral surface amino acids to give more negatively polarized or charged amino acids. The invention further relates to methods of increasing the stability of an α-amylase to dimerization and/or multimerization brought about by electrostatic interactions whereby at least one amino acid residue on the surface of the starting molecule, which makes a neutral or positively polar or charged contribution to the electrostatic potential of said molecule, is replaced with a more negatively polar or negatively charged amino acid residue. The α-amylase variants obtained thereby exhibit better stability to influences of the solvent, increased processivity, and are suited for numerous industrial areas of use, in particular as active ingredients in detergents and cleansers.
Abstract:
According to the invention, storage stability in terms of amylolytic activity is to be improved in a liquid washing or cleaning agent which comprises a protease and amylase. This is achieved by the use of a protease which comprises an amino acid sequence which is at least 80% identical to the amino acid sequence specified in SEQ ID NO. 1 and which has the amino acid glutamic acid (E) or aspartic acid (D) or the amino acid asparagine (N) or glutamine (Q) or the amino acid alanine (A) or glycine (G) or serine (S) at position 99 in the count according to SEQ ID NO. 1.