Abstract:
Systems and methods that directly image attenuation-based object grid, use a source grid to improve imaging of the object grid using a high-energy polychromatic source, and use a detector grid having gratings oriented substantially orthogonally to that of the object grid, can address artifacts and beam hardening effects that limit the quality and discriminatory power of high-energy x-ray imaging that includes phase contrast.
Abstract:
Target assemblies are provided that can include a uranium-comprising annulus. The assemblies can include target material consisting essentially of non-uranium material within the volume of the annulus. Reactors are disclosed that can include one or more discrete zones configured to receive target material. At least one uranium-comprising annulus can be within one or more of the zones. Methods for producing isotopes within target material are also disclosed, with the methods including providing neutrons to target material within a uranium-comprising annulus. Methods for modifying materials within target material are disclosed as well as are methods for characterizing material within a target material.
Abstract:
Method include emitting x-rays from an x-ray source, directing a first portion of the x-rays through an object grating situated adjacent to an object while the object is scanned relative to the object grating along a scan direction, directing a second portion of the x-rays through the object and subsequently through a detector grating without transmitting through the object grating, wherein the object grating and detector grating are adjacently arranged in a field of view of the x-rays sequentially with respect to each other in the scan direction, and receiving the first portion transmitted through the object and object grating with a first portion of a detector and receiving the second portion transmitted through the object and the detector grating with a second portion of the detector adjacent to the first portion of the detector. Systems are also disclosed, along with related techniques for beam hardening correction.
Abstract:
Systems and methods that directly image attenuation-based object grid, use a source grid to improve imaging of the object grid using a high-energy polychromatic source, and use a detector grid having gratings oriented substantially orthogonally to that of the object grid, can address artifacts and beam hardening effects that limit the quality and discriminatory power of high-energy x-ray imaging that includes phase contrast.
Abstract:
Target assemblies are provided that can include a uranium-comprising annulus. The assemblies can include target material consisting essentially of non-uranium material within the volume of the annulus. Reactors are disclosed that can include one or more discrete zones configured to receive target material. At least one uranium-comprising annulus can be within one or more of the zones. Methods for producing isotopes within target material are also disclosed, with the methods including providing neutrons to target material within a uranium-comprising annulus. Methods for modifying materials within target material are disclosed as well as are methods for characterizing material within a target material.
Abstract:
Systems and methods that directly image attenuation-based object grid, use a source grid to improve imaging of the object grid using a high-energy polychromatic source, and use a detector grid having gratings oriented substantially orthogonally to that of the object grid, can address artifacts and beam hardening effects that limit the quality and discriminatory power of high-energy x-ray imaging that includes phase contrast.
Abstract:
Method include emitting x-rays from an x-ray source, directing a first portion of the x-rays through an object grating situated adjacent to an object while the object is scanned relative to the object grating along a scan direction, directing a second portion of the x-rays through the object and subsequently through a detector grating without transmitting through the object grating, wherein the object grating and detector grating are adjacently arranged in a field of view of the x-rays sequentially with respect to each other in the scan direction, and receiving the first portion transmitted through the object and object grating with a first portion of a detector and receiving the second portion transmitted through the object and the detector grating with a second portion of the detector adjacent to the first portion of the detector. Systems are also disclosed, along with related techniques for beam hardening correction.
Abstract:
Systems and methods that directly image attenuation-based object grid, use a source grid to improve imaging of the object grid using a high-energy polychromatic source, and use a detector grid having gratings oriented substantially orthogonally to that of the object grid, can address artifacts and beam hardening effects that limit the quality and discriminatory power of high-energy x-ray imaging that includes phase contrast.