Abstract:
A linear transport system comprises a first carriage and a second carriage, a linear motor for driving the first carriage and the second carriage and a guide rail. The linear motor comprises a stator and a first and a second rotor. The stator has a plurality of drive coils that are arranged along the guide rail individual motor modules comprise a plurality of drive coils. The first rotor is arranged on the first carriage and the second rotor is arranged on the second carriage. The first carriage has a first magnetic field generator. The second carriage has a second magnetic field generator. The first magnetic field generator differs from the second magnetic field generator at least in terms of its magnetic vector field, wherein the magnetic fields of the magnetic field generators are detected to identify the corresponding carriage.
Abstract:
A method for detecting a position of a movable element of a drive apparatus by means of a position detection apparatus comprising at least one field coil and at least one secondary coil associated with the field coil, wherein an electrical excitation pulse is applied to the field coil in order to induce an electrical voltage in the secondary coil, a secondary coil voltage is measured and the position of the movable element is determined on the basis of the measured secondary coil voltage. The invention also relates to a position detection apparatus and/or a drive apparatus.
Abstract:
A method for detecting a position of a movable element of a drive apparatus by means of a position detection apparatus comprising at least one field coil and at least one secondary coil associated with the field coil, wherein an electrical excitation pulse is applied to the field coil in order to induce an electrical voltage in the secondary coil, a secondary coil voltage is measured and the position of the movable element is determined on the basis of the measured secondary coil voltage. The invention also relates to a position detection apparatus and/or a drive apparatus.
Abstract:
A linear transport system comprises a first carriage and a second carriage, a linear motor for driving the first carriage and the second carriage and a guide rail. The linear motor comprises a stator and a first and a second rotor. The stator has a plurality of drive coils that are arranged along the guide rail individual motor modules comprise a plurality of drive coils. The first rotor is arranged on the first carriage and the second rotor is arranged on the second carriage. The first carriage has a first magnetic field generator. The second carriage has a second magnetic field generator. The first magnetic field generator differs from the second magnetic field generator at least in terms of its magnetic vector field, wherein the magnetic fields of the magnetic field generators are detected to identify the corresponding carriage.
Abstract:
A linear transport system comprises a first carriage and a second carriage, a linear motor for driving the first carriage and the second carriage and a guide rail. The linear motor comprises a stator and a first and a second rotor. The stator has a plurality of drive coils that are arranged along the guide rail individual motor modules comprise a plurality of drive coils. The first rotor is arranged on the first carriage and the second rotor is arranged on the second carriage. The first carriage has a first magnetic field generator. The second carriage has a second magnetic field generator. The first magnetic field generator differs from the second magnetic field generator at least in terms of its magnetic vector field, wherein the magnetic fields of the magnetic field generators are detected to identify the corresponding carriage.
Abstract:
A switch-on unit for a tool of a movable unit of a linear transport system can be fastened to the movable unit. The switch-on unit includes a housing, an energy-receiving coil with energy-receiving electronics, and a movable antenna with communication electronics. The energy-receiving electronics and the communication electronics are disposed on at least a first circuit board within the housing. The housing has an opening for connections of the tool and an installation space for application electronics. A first circuit board has a first interface for the application electronics, with a power supply and communication link. The communication electronics are arranged to receive a first data signal via the movable antenna, to calculate a second data signal from information about a data structure of the first data signal and the first data signal, and to provide the second data signal at the communication link.
Abstract:
To control a technical process comprising a control task for independently controllable modules, modules are each assigned to a computing core on a controller with a plurality of computing cores. The technical process is connected to the controller via at least one communication connection. In a first time segment, the controller provides read-in input data of the modules for the respectively associated computing core. Subsequently, synchronization of the computing cores to which modules are assigned is carried out by the controller. In a second time segment, the computing cores process the input data of the modules to generate output data for the modules, wherein each computing core signals the end of processing. As soon as all computing cores have signaled the end of processing, the output data are provided in a third time segment by the controller in order to be provided to the modules on the communication connection.
Abstract:
A linear transport system comprises a stationary unit and a movable unit. The linear transport system also comprises a drive for driving the movable unit, the drive comprising a linear motor, the linear motor comprising a stator and a rotor. The stator comprises the one or the plurality of stationary units, and the rotor is arranged on the movable unit and comprises one or a plurality of magnets. The stationary unit comprises an energy sending coil. The movable unit comprises an energy receiving coil. The movable unit comprises a fixing device, where the fixing device is set up to fix the movable unit in the linear transport system. The fixing device comprises a movable element, where the movable element can be moved between a first position and a second position, where in the first position the movable element initiates a mechanical fixing of the movable unit.
Abstract:
A method for transferring data between movable and stationary units of a linear transport system having a controller and linear motor with stator and rotor for driving the movable unit along a guide rail. The stator includes the stationary units, each with one or more drive coils. The rotor is arranged on the movable unit, with one or more magnets. The stationary units each have at least one stationary antenna, and the movable unit has a movable antenna. The controller selects a stationary antenna based on position data of the moveable antenna and outputs a data packet to the stationary unit, with control and data signals transmitted via the selected stationary antenna. The control signal includes identification information to identify the stationary antenna. The data signal includes a communication frame with a start bit and user data following a start sequence arranged to trigger data receipt of the movable unit.
Abstract:
To control a technical process comprising a control task for independently controllable modules, modules are each assigned to a computing core on a controller with a plurality of computing cores. The technical process is connected to the controller via at least one communication connection. In a first time segment, the controller provides read-in input data of the modules for the respectively associated computing core. Subsequently, synchronization of the computing cores to which modules are assigned is carried out by the controller. In a second time segment, the computing cores process the input data of the modules to generate output data for the modules, wherein each computing core signals the end of processing. As soon as all computing cores have signaled the end of processing, the output data are provided in a third time segment by the controller in order to be provided to the modules on the communication connection.