Abstract:
A method for constructing episodic memory model based on rat brain visual pathway and entorhinal-hippocampal structure mainly applied to environment cognition and navigation of an intelligent mobile robot to complete tasks of environment cognition map construction and target-oriented navigation is provided. The image information of the environment, the head-direction angle and speed of the robot are collected, and then the head-direction angle and speed of the robot are input into the entorhinal-hippocampal CA3 neural computational model to obtain the robot's precise position. The visual information is input into the computational model of the visual pathway to obtain the scene information in the current vision of the robot. The above two kinds of information are fused and stored in a cognitive node with the topological relationship. Utilizing scenario information to correct the path integration errors during the exploration process of the robot, thereby constructing the episodic cognitive map representing the environment.
Abstract:
A robot constructs a navigation map based on the cognitive mechanism of rat hippocampus. The robot collects current self-motion cues and color depth map information through exploring the environment; self-motion cues form spatial environment codes gradually through path integral and feature extraction of spatial cells in hippocampus, place field of place cells is gradually formed during exploring the process and covers the whole environment to form a cognitive map. Further, Kinect collects scene view and color depth map information of the current position in right ahead direction as an absolute reference, proceeding path closed-loop detection to correct the errors of the path integral. At a close-loop point, the system proceeds reset of spatial cells discharging activity to correct the errors of the path integral. The final point in navigation map includes coding information of place cells series, corresponding visual cues and position topological relationship.
Abstract:
A robot constructs a navigation map based on the cognitive mechanism of rat hippocampus. The robot collects current self-motion cues and color depth map information through exploring the environment; self-motion cues form spatial environment codes gradually through path integral and feature extraction of spatial cells in hippocampus, place field of place cells is gradually formed during exploring the process and covers the whole environment to form a cognitive map. Further, Kinect collects scene view and color depth map information of the current position in right ahead direction as an absolute reference, proceeding path closed-loop detection to correct the errors of the path integral. At a close-loop point, the system proceeds reset of spatial cells discharging activity to correct the errors of the path integral. The final point in navigation map includes coding information of place cells series, corresponding visual cues and position topological relationship.
Abstract:
A method and device of torque generation based on electromagnetic effect is provided. An electromagnetic torque whose direction is opposite to the motor driving direction is generated in a magnetic field when a motor-drive armature winding is adopted based on the electro-magnetic induction principle. Meanwhile, a reverse electromagnetic torque which is reverse to the armature winding with the same magnitude, is applied on a magnet set and is transmitted to an underactuated system so as to provide required torque for the underactuated system. Advantageously, the provided torque is in direct ratio to speed, difficulty in control is significantly reduced, two-stage electromagnetic variable speed can be achieved, the design of the system is simple and reliable with a concise and clear structure, and the device may be employed in a wide variety of applications.
Abstract:
A method for constructing episodic memory model based on rat brain visual pathway and entorhinal-hippocampal structure mainly applied to environment cognition and navigation of an intelligent mobile robot to complete tasks of environment cognition map construction and target-oriented navigation is provided. The image information of the environment, the head-direction angle and speed of the robot are collected, and then the head-direction angle and speed of the robot are input into the entorhinal-hippocampal CA3 neural computational model to obtain the robot's precise position. The visual information is input into the computational model of the visual pathway to obtain the scene information in the current vision of the robot. The above two kinds of information are fused and stored in a cognitive node with the topological relationship. Utilizing scenario information to correct the path integration errors during the exploration process of the robot, thereby constructing the episodic cognitive map representing the environment.
Abstract:
A method and device of torque generation based on electromagnetic effect is provided. An electromagnetic torque whose direction is opposite to the motor driving direction is generated in a magnetic field when a motor-drive armature winding is adopted based on the electro-magnetic induction principle. Meanwhile, a reverse electromagnetic torque which is reverse to the armature winding with the same magnitude, is applied on a magnet set and is transmitted to an underactuated system so as to provide required torque for the underactuated system. Advantageously, the provided torque is in direct ratio to speed, difficulty in control is significantly reduced, two-stage electromagnetic variable speed can be achieved, the design of the system is simple and reliable with a concise and clear structure, and the device may be employed in a wide variety of applications.
Abstract:
A method and device of torque generation based on electromagnetic effect is provided. An electromagnetic torque whose direction is opposite to the motor driving direction is generated in a magnetic field when a motor-drive armature winding is adopted based on the electro-magnetic induction principle. Meanwhile, a reverse electromagnetic torque which is reverse to the armature winding with the same magnitude, is applied on a magnet set and is transmitted to an underactuated system so as to provide required torque for the underactuated system. Advantageously, the provided torque is in direct ratio to speed, difficulty in control is significantly reduced, two-stage electromagnetic variable speed can be achieved, the design of the system is simple and reliable with a concise and clear structure, and the device may be employed in a wide variety of applications.
Abstract:
A method and device of torque generation based on electromagnetic effect is provided. An electromagnetic torque whose direction is opposite to the motor driving direction is generated in a magnetic field when a motor-drive armature winding is adopted based on the electro-magnetic induction principle. Meanwhile, a reverse electromagnetic torque which is reverse to the armature winding with the same magnitude, is applied on a magnet set and is transmitted to an underactuated system so as to provide required torque for the underactuated system. Advantageously, the provided torque is in direct ratio to speed, difficulty in control is significantly reduced, two-stage electromagnetic variable speed can be achieved, the design of the system is simple and reliable with a concise and clear structure, and the device may be employed in a wide variety of applications.