摘要:
A cardiac device and method for detecting QRS signals within a composite heart signal of a body including providing at least two input heart signals via at least two separate input channels, wherein each of the at least two input heart signals is recorded by pairs of sensing electrodes that have one electrode in common and provided coincidental in time. The cardiac device and method include generating estimated signals from the input heart signals, combining the input heart signals and the estimated signals to a combined input stream (SECG), and detecting the QRS signal by comparing the combined input stream (SECG) to an adaptive detection threshold (ATHR) which adapts throughout time.
摘要:
A method for detecting an ectopic signal in an electrocardiogram is disclosed. This method comprises the following steps: detecting consecutive R-R intervals in an electrocardiogram; calculating an average R-R interval for a determinable number of latest R-R intervals; recognizing a signal as ectopic signal if the signal belongs to at least one of two consecutive R-R intervals, wherein i) a first of the two consecutive R-R intervals is significantly shorter than the average R-R interval; and ii) a second of the two consecutive R-R intervals is significantly longer than the average R-R interval, wherein the second R-R interval occurs later than the first R-R interval; wherein the first and the second of the two consecutive R-R intervals are discarded from calculating the average R-R interval, if the signal is recognized as ectopic signal.
摘要:
A method of enhancing the signal-to-noise ratio (SNR) of measured electrocardiogram (ECG) signals is provided. The method includes the steps of providing at least three cardiac input signals derived from the measured ECG signals S1 and forming a first estimate U1 S2 from each of at least three pairs of input signals. Moreover, the method includes the steps of forming a second estimate U2 S3 from each of at least three input signals; comparing S4 the polarity and the amplitude of a first and second estimate U1, U2 to at least one threshold T; generating S5 a composite signal X, wherein the polarity and the amplitude of the composite signal X depend on the result of the comparison; and using S6 the generated composite signal X to produce an output signal with enhanced signal-to-noise ratio (SNR). Furthermore, a corresponding cardiac device is also provided.
摘要:
ECG data is analyzed by detecting points in the ECG data which represent ventricular activity; measuring time intervals between each two consecutive points in the ECG data which represent ventricular activity; and then within a set of such time intervals, evaluating the time intervals by computing at least one comparative dimension for at least one time interval subset. The time interval subset includes at least two time intervals, and the comparative dimension represents variations between the interval lengths between the time intervals of the time interval subset.
摘要:
A cardiac device and method thereof for detecting atrial fibrillation within a mean heart signal of a body, wherein the cardiac device includes at least two sensing electrodes. The method includes providing an input heart signal, detecting sense events (VS) and noise events (VN), and generating further noise events (VN) each at a predetermined time interval after a noise event (VN) has been detected and when the noise event (VN) continues. The method includes incrementing a noise counter for each noise event (VN) and each further noise event (VN), and terminating the detection of atrial fibrillation when the noise counter reaches a predetermined limit.
摘要:
An implantable medical device includes an electronic processing device configured for processing a physiological signal, a memory, and a communication device for communicating with an external device. The processing device includes a coding module for coding the physiological signal to obtain an output signal for transmission by the communication device to the external device. The coding module is configured to encode the physiological signal using at least one fixed Huffman code table stored in the memory to obtain the output signal.
摘要:
ECG data is analyzed by detecting points in the ECG data which represent ventricular activity; measuring time intervals between each two consecutive points in the ECG data which represent ventricular activity; and then within a set of such time intervals, evaluating the time intervals by computing at least one comparative dimension for at least one time interval subset. The time interval subset includes at least two time intervals, and the comparative dimension represents variations between the interval lengths between the time intervals of the time interval subset.
摘要:
A method of enhancing the signal-to-noise ratio (SNR) of measured electrocardiogram (ECG) signals is provided. The method includes the steps of providing at least three cardiac input signals derived from the measured ECG signals S1 and forming a first estimate U1 S2 from each of at least three pairs of input signals. Moreover, the method includes the steps of forming a second estimate U2 S3 from each of at least three input signals; comparing S4 the polarity and the amplitude of a first and second estimate U1, U2 to at least one threshold T; generating S5 a composite signal X, wherein the polarity and the amplitude of the composite signal X depend on the result of the comparison; and using S6 the generated composite signal X to produce an output signal with enhanced signal-to-noise ratio (SNR). Furthermore, a corresponding cardiac device is also provided.
摘要:
A cardiac device and method for detecting QRS signals within a composite heart signal of a body including providing at least two input heart signals via at least two separate input channels, wherein each of the at least two input heart signals is recorded by pairs of sensing electrodes that have one electrode in common and provided coincidental in time. The cardiac device and method include generating estimated signals from the input heart signals, combining the input heart signals and the estimated signals to a combined input stream (SECG), and detecting the QRS signal by comparing the combined input stream (SECG) to an adaptive detection threshold (ATHR) which adapts throughout time.