Abstract:
An array substrate and manufacturing method thereof, display panel and display device are disclosed. The array substrate includes a display region and a packaging region surrounding the display region. The packaging region is provided with a packaging planarization layer, the packaging planarization layer includes a plurality of packaging planarization units, and each of the packaging planarization units is formed as a ring shaped pattern in the packaging region and configured to surround the display region.
Abstract:
The present application discloses an organic light emitting diode array substrate comprising a base substrate; a first electrode; a second electrode; and a pixel definition layer. The pixel definition layer comprises a first insulating layer comprising a plurality of first insulating units; a second insulating layer comprising a plurality of second insulating units; and a conductive layer comprising a plurality of interconnected conductive units sandwiched by the first insulating layer and the second insulating layer.
Abstract:
The embodiments of the present invention provide an encapsulation method, a display panel and a display device. The encapsulation method includes: forming a first room temperature bonding layer on the encapsulation region of the array substrate, an OLED device is formed on the display region of the array substrate; forming a second room temperature bonding layer on the encapsulation region of the heat diffuser plate; vacuum laminating the array substrate and the heat diffuser plate such that the first room temperature bonding layer and the second room temperature bonding layer contact with each other and form a sealed structure. The encapsulation method omits the existing encapsulation substrate by using room temperature bonding technology to encapsulate the heat diffuser plate and the array substrate, therefore can not only reduce the overall thickness of the display panel but also further improve the heat dissipation effect.
Abstract:
An OLED array substrate, comprising a plurality of pixel units, the pixel unit at least comprising a first sub-pixel, a second sub-pixel and a third sub-pixel, further comprising: a substrate, a TFT array and a pixel electrode formed on the substrate, and at least two organic luminescent material layers that display different colors formed on the pixel electrode, wherein the first sub-pixel comprises a first pixel electrode, the second sub-pixel comprises a second pixel electrode, the third sub-pixel comprises a third pixel electrode, an organic luminescent material layer of a first color covers the adjacent first pixel electrode and second pixel electrode in the pixel unit, an organic luminescent material layer of a second color covers the adjacent second pixel electrode and third pixel electrode in the pixel unit.
Abstract:
The disclosure describes a flexible display apparatus and an encapsulation method thereof, which are capable of solving the problem of easily producing cracks with the existing encapsulating film layer and improving the performance of flex resistance of the flexible display apparatus. The flexible display apparatus according to the disclosure includes: an LED device, and a protective layer arranged on a cathode of the OLED device, wherein the protective layer includes a water oxygen barrier region and a multi-functional region, the multi-functional region has dual functions of a water oxygen barrier and stress blocking, and the thickness of the film layer in the multi-functional region is less than that of the film layer in the water oxygen barrier region, and/or the film texture in the multi-functional region is looser than that in the water oxygen barrier region.
Abstract:
The present invention discloses a pixel unit and a method for manufacturing the same, a display panel, and a display apparatus. A pixel unit comprises a first electrode, a pixel defining layer, a light emitting layer and a second electrode, wherein the second electrode comprises a first portion and a second portion; the pixel defining layer defines a pixel region, the light emitting layer and the first portion of the second electrode are disposed successively within the pixel region, and an upper surface of the first portion of the second electrode is substantially in same plane with an upper surface of the pixel defining layer; and, the second portion of the second electrode is positioned over the first portion and is connected with a second electrode of an adjacent pixel unit. With the technical solutions of the present invention, phenomenon including fractures, abscissions, bubbles and the like due to existence of difference in height in the pixel region will be eliminated, averting adverse influence resulting in failures of the display apparatus.
Abstract:
The present invention discloses a pixel unit and a method for manufacturing the same, a display panel, and a display apparatus. A pixel unit comprises a first electrode, a pixel defining layer, a light emitting layer and a second electrode, wherein the second electrode comprises a first portion and a second portion; the pixel defining layer defines a pixel region, the light emitting layer and the first portion of the second electrode are disposed successively within the pixel region, and an upper surface of the first portion of the second electrode is substantially in same plane with an upper surface of the pixel defining layer; and, the second portion of the second electrode is positioned over the first portion and is connected with a second electrode of an adjacent pixel unit. With the technical solutions of the present invention, phenomenon including fractures, abscissions, bubbles and the like due to existence of difference in height in the pixel region will be eliminated, averting adverse influence resulting in failures of the display apparatus.
Abstract:
The embodiments of the present invention provide an encapsulation method, a display panel and a display device. The encapsulation method includes: forming a first room temperature bonding layer on the encapsulation region of the array substrate, an OLED device is formed on the display region of the array substrate; forming a second room temperature bonding layer on the encapsulation region of the heat diffuser plate; vacuum laminating the array substrate and the heat diffuser plate such that the first room temperature bonding layer and the second room temperature bonding layer contact with each other and form a sealed structure. The encapsulation method omits the existing encapsulation substrate by using room temperature bonding technology to encapsulate the heat diffuser plate and the array substrate, therefore can not only reduce the overall thickness of the display panel but also further improve the heat dissipation effect.
Abstract:
An OLED array substrate, comprising a plurality of pixel units, the pixel unit at least comprising a first sub-pixel, a second sub-pixel and a third sub-pixel, further comprising: a substrate, a TFT array and a pixel electrode formed on the substrate, and at least two organic luminescent material layers that display different colors formed on the pixel electrode, wherein the first sub-pixel comprises a first pixel electrode, the second sub-pixel comprises a second pixel electrode, the third sub-pixel comprises a third pixel electrode, an organic luminescent material layer of a first color covers the adjacent first pixel electrode and second pixel electrode in the pixel unit, an organic luminescent material layer of a second color covers the adjacent second pixel electrode and third pixel electrode in the pixel unit.
Abstract:
A mask plate frame and a mask plate assembly are provided, the mask plate frame includes: a first frame body provided with a first supporting portion and a second supporting portion and a second frame body arranged on a supporting surface of the first supporting portion. A first distance between the supporting surface of the first supporting portion and a bottom surface of the first frame body is larger than a second distance between a supporting surface of the second supporting portion and the bottom surface of the first frame body; and an orthogonal projection of the second supporting portion onto a plane parallel to the bottom surface of the first frame body is within an orthogonal projection of the first supporting portion onto the plane parallel to the bottom surface of the first frame body.