Abstract:
An electronic device and one or more control methods thereof are provided. In one example, the electronic device may include a display device, one or more imaging devices, and a signal processing device. The display device may include a display panel and a non-display area at an edge of the display panel, the non-display area having one or more light-passing structures. Each of the one or more imaging devices may correspond to one of the one or more light-passing structures. Further, each of the one or more imaging devices may be disposed in an internal space of the electronic device. The signal processing device may be connected to each of the display device and the one or more imaging devices. The electronic device may increase an actual screen ratio of a rectangular image displayed on a user-oriented side of the electronic device.
Abstract:
A near eye display device and method are provided. The near eye display device including: a display panel and a lens module. The display panel includes a plurality of display areas arranged in an array, each of the display areas includes at least one pixel unit; and the lens module includes a plurality of micro-lenses arranged in an array, which include a plurality of deflection micro-lenses, an end of the deflection micro-lenses close to a center of the lens module is closer to the display panel than an end of the deflection micro-lenses far away from the center of the lens module, each of the display areas corresponds to at least one of the micro-lenses, and an adjacent portion of two adjacent display areas of the display areas corresponds to two different micro-lenses of the micro-lenses and the two different micro-lenses include at least one of the deflection micro-lenses.
Abstract:
A pixel structure comprises a plurality of pixel regions, and each of the pixel regions includes first and second electrodes that are overlapped with each other, the first electrode is disposed above the second electrode, and each of the pixel regions is divided at least into a first to fourth domain display regions; strip-shaped first electrodes in the first to fourth domain display regions make first to fourth angles with a reference direction; the sum of the first angle and the second angle is 180 degrees, the sum of the third angle and the fourth angle is 180 degrees, and the first, the second, the third and the fourth angles are different from one another.
Abstract:
A liquid crystal display panel includes: a first polarizer, a second polarizer, a liquid crystal layer including first liquid crystal molecules, a first optical compensation layer between the liquid crystal layer and any of the first polarizer and the second polarizer, a second optical compensation layer on a same side of the liquid crystal layer as the first optical compensation layer. In a non-powered state of the liquid crystal display panel, orthographic projections of optical axes of the first liquid crystal molecules on the first polarizer, which are perpendicular to an orthographic projection of an optical axis of the first optical compensation layer on the first polarizer, are parallel to any of transmission axes of the first polarizer and the second polarizer that are perpendicular to each other. An optical axis of the second optical compensation layer is perpendicular to a plane where the second optical compensation layer is located.
Abstract:
The present disclosure has disclosed a light guide device, comprising an optical waveguide layer (100), and a reflection layer (110) one surface of which is connected with the optical waveguide layer, said one surface including a plurality of protrusions (113), each protrusion including a first surface (114) forming a first angle (θ1) with respect to a surface of the optical waveguide layer, and a first intersection line (116) between a plane in which the surface of the optical waveguide layer is located and a plane in which the first surface is located being perpendicular to a light guiding direction of the optical waveguide layer. The present disclosure has disclosed a manufacturing method of a light guide device as well as a backlight module and display device including the light guide device at the same time.
Abstract:
A virtual curved surface display panel, a method of manufacturing the same, and a display device are provided. A set of vertical lenticular lens and horizontal lenticular lens fitted tightly and orthogonally is arranged on a light exit surface of a pixel in the flat display panel, which forms an equivalent spherical lens. The focal lengths of the equivalent spherical lenses are symmetrically distributed with a central pixel as a symmetry axis, and focal lengths of the equivalent spherical lenses in the columns located on the same side of the symmetry axis are not equal to each other. Therefore, the equivalent spherical lenses enable the images of the pixels to form a curved surface, thereby realizing virtual curved surface display.
Abstract:
The embodiments of the present disclosure provide a display panel, a display device, and a method for manufacturing the display panel. The display panel comprises: a display module comprising a fingerprint recognition component; a packaging cover plate located on a light emergent side of the display module; and a plurality of light path adjustment devices located between the packaging cover plate and the fingerprint recognition component, wherein each of the light path adjustment devices comprises an optical fiber structure and a convex lens structure, which are arranged opposite each other, with the convex lens structure being located on the side of the optical fiber structure that is away from the packaging cover plate; and the light path adjustment devices are configured to adjust incident light reflected by a finger so as to reduce the angle of divergence of light entering the fingerprint recognition component.
Abstract:
An augmented reality display apparatus and method, which relates to the display technology, and may display the shielding relationship between a virtual image and a real image intuitively, so as to blend the virtual image into the real image better. The augmented reality display apparatus comprises a virtual image data extractor, a real image data extractor and an image controller. The image controller is connected with the virtual image data extractor and the real image data extractor respectively, and configured to determine coincide data based on virtual image data and real image data, and obtain visual object information of the coincide data, based on which a content corresponding to the visual object is controlled to be in a display state, and a content corresponding to the non-visual object is controlled to be in a non-display state. The augmented reality display apparatus may be configured to display images.
Abstract:
A display panel and a display device are disclosed and belong to the field of display technology. The display panel comprises a first substrate and a second substrate opposite to each other, a liquid crystal layer, a first electrode, and a second electrode between the first substrate and the second substrate, a waveguide layer between the first substrate and the liquid crystal layer, and a plurality of grating units which are combined with the liquid crystal layer and disposed in a same layer as the liquid crystal layer; wherein the first electrode and the second electrode are configured to adjust a refractive index of the liquid crystal layer by changing voltages applied thereto; and a coupling efficiency at which light is coupled out of the waveguide layer is determined according to a difference between a refractive index of the grating units and the refractive index of the liquid crystal layer.
Abstract:
A virtual curved surface display panel and a display device are provided. By using the light splitting principle of the grating structure, the imaging heights of the grating structures are designed to be symmetrically distributed with respect to a vertical symmetry axis of a display surface of the flat display panel. In the grating structures on the same side of the symmetry axis, the imaging heights of the respective grating structures having the same distance from the vertical symmetry axis are the same, and the imaging heights of the respective grating structures having different distances from the vertical symmetry axis are different from each other. By setting the imaging heights of the grating structures, the image distances of the pixels in the flat display panel are different so that the images of the plurality of pixels constitute a curved surface.