Abstract:
In the invention, as the arrangement of the color filters of the sub-pixel units of every two adjacent pixel units in the row direction, from at least one group composed of two adjacent columns of pixel units in the row direction, is changed, so that the color filters of two adjacent sub-pixel units in the row direction, which belong to different two pixel units, have the same color. Moreover, position of the data line connected with the sub-pixel units with color filters of the same color is changed, so that the data line is provided at a side of one of the sub-pixel units with color filters of the same color far away from the other one thereof. Therefore, while the color mixing phenomenon is avoided, a part of the black matrix, which should be provided between the two adjacent sub-pixel units in the row direction, may be omitted.
Abstract:
A method for preparing a liquid crystal alignment layer, a liquid crystal alignment layer, and a display device. The method for preparing a liquid crystal alignment layer includes: S1, dripping liquid crystals and performing cell-assembling, wherein a liquid alignment material is added to the liquid crystals and the alignment material is curable and includes molecules capable of inducing alignment of liquid crystal molecules S2, applying an electric field or a magnetic field, wherein the direction of the electric field is approximately the same as a preset direction of the liquid crystal alignment layer, and the direction of the magnetic field is perpendicular to the preset direction of the liquid crystal alignment layer; and S3, performing curing while maintaining the electric field or the magnetic field until the alignment material completes the curing reaction.
Abstract:
A display panel (01) is provided. The display panel (01) includes a first substrate (10) and a second substrate (20) bonded to each other, and electro-optic material (30) disposed between the first substrate (10) and the second substrate (20). The first substrate (10) includes a thin film transistor (101), a first electrode (102) and a second electrode (103). The second substrate (20) may comprise a resin layer and a plurality of conductive electrodes (202), the resin layer includes a plurality of color filters having different colors and arranged sequentially and alternately. Along a color changing direction of the color filters of the resin layer, at least a part (202a) of one conductive electrode (202) is disposed at an edge of at least one color filter. The conductive electrode (202) may be disposed above or under the resin layer. The conductive electrode (202) may be of the same potential with any one of the first electrode (102) and the second electrode (103).
Abstract:
A pixel structure and a display device are provided. The pixel structure includes: a plurality of pixel units arranged in a matrix, each pixel unit including first to seventh subpixels arranged sequentially in a row direction, and the first subpixel, the second subpixel, the third subpixel and the fourth subpixel being different from one another in color. Each subpixel among the first to third subpixels has a same color as that of one subpixel among the fifth to the seventh pixels, respectively. The number of colors of the pixel structure becomes from original three to at least four, added subpixels are shared by pixels on both sides thereof, colors illustrated are more diversified by color modulation, and gamut of the display device is improved.
Abstract:
In a liquid crystal display panel, as the arrangement of the color filters of the sub-pixel units of every two adjacent pixel units in the row direction, from at least one group composed of two adjacent columns of pixel units in the row direction, is changed, the color filters of two adjacent sub-pixel units in the row direction, which belong to different two pixel units, have the same color; position of the data line connected with the sub-pixel units with color filters of the same color is changed, so that the data line is provided at a side of one of the sub-pixel units with color filters of the same color far away from the other one thereof. Therefore, while the color mixing phenomenon is avoided, a part of the black matrix, which should be provided between the two adjacent sub-pixel units in the row direction, may be omitted.
Abstract:
Disclosed are a display device and a manufacturing method thereof. The display device includes a display panel and a backlight module, wherein the display panel includes a first display substrate, the backlight module includes a light guide plate and a plurality of optical films, the light guide plate and the first display substrate are subjected to assembling and aligning, and the optical films are packaged between the light guide plate and the first display substrate. The light guide plate and the first display substrate of the display device are packaged together, and the optical films are packaged therebetween, the optical films are laminated to be firmly fixed together to prevent the optical films from being scratched, so no protection layer needs to be arranged in the backlight module, in this way, the thickness of the backlight module is decreased, and the thickness of the display device is decreased beneficially.
Abstract:
A liquid crystal (LC) lens, a manufacturing method thereof and a display device are provided. The LC lens comprises a first substrate, a second substrate and a liquid crystal layer disposed between the first substrate and the second substrate. A plurality of electrode groups is disposed on the first substrate; each electrode group comprises a plurality of mutually insulated electrodes; and a transparent partition is disposed between two adjacent electrode groups. The LC lens can avoid LC disclination in the area between two adjacent strip electrode groups and hence avoid the influence of 3D display effect.
Abstract:
A pixel structure comprises a plurality of pixel regions, and each of the pixel regions includes first and second electrodes that are overlapped with each other, the first electrode is disposed above the second electrode, and each of the pixel regions is divided at least into a first to fourth domain display regions; strip-shaped first electrodes in the first to fourth domain display regions make first to fourth angles with a reference direction; the sum of the first angle and the second angle is 180 degrees, the sum of the third angle and the fourth angle is 180 degrees, and the first, the second, the third and the fourth angles are different from one another.
Abstract:
A liquid crystal lens and a display device are provided. The liquid crystal lens includes: a first substrate and a second substrate arranged opposite to each other; a liquid crystal layer, located between the first substrate and the second substrate; a plurality of strip-shaped first electrodes, parallel to each other and located on a side of the first substrate facing the liquid crystal layer; a first alignment layer, located on a side of the first electrodes facing the liquid crystal layer; a planar second electrode, located on a side of the second substrate facing the liquid crystal layer; and a second alignment layer, located on a side of the second electrode facing the liquid crystal layer, wherein an included angle between an extending direction of each of the first electrodes and one edge (a) of the first substrate is greater than zero, a rubbing direction of the first alignment layer and a rubbing direction of the second alignment layer are symmetric with respect to the extending direction of the first electrode, thereby ensuring that a liquid crystal lens with better symmetry can be acquired under smaller moire pattern.
Abstract:
The present invention relates to the field of display technology, and particularly to a stereoscopic display device and a cell-aligning packaging method of the same. The stereoscopic display device is divided into a display area and a non-display area surrounding the display area on the periphery of the display area, and comprises a conversion panel and a liquid crystal panel which are aligned to form a cell, a first polarizer is provided between the conversion panel and the liquid crystal panel, the first polarizer is arranged in the display area, and an adhesive lump is provided around the first polarizer and correspondingly to the non-display area between the conversion panel and the liquid crystal panel and is used for bonding the conversion panel and the liquid crystal panel into a whole.