摘要:
The present disclosure describes a flexible liquid crystal display panel and a method of manufacturing the same, a flexible liquid crystal display and a wearable device to reduce impact of the variation in the cell gap of the liquid crystal layer on the display effect and to improve the display quality. The flexible liquid crystal display panel comprises a first flexible substrate and a second flexible substrate arranged in cell alignment, and a liquid crystal layer located between the first flexible substrate and the second flexible substrate. The liquid crystal in the liquid crystal layer has a birefringence Δn1 8 μm, which satisfy the formula Δn1*d1=λ0 where λ0 is a phase difference when the flexible liquid crystal display panel is not deformed and is a set constant.
摘要:
The present disclosure relates to the field of display technology, and particularly relates to a display panel and a display apparatus. The display panel comprises a backlight source and a display substrate, wherein the display substrate comprises a plurality of pixel regions each comprising a transmissive region and a reflective region, a first polarizer is provided in an area corresponding to the transmissive region and at a side proximal to the backlight source, the first polarizer extends within the transmissive region only; and a reflective unit is provided in an area corresponding to the reflective region and close to the backlight source, and the reflective unit and the first polarizer are substantially provided in a same layer.
摘要:
A display panel motherboard, a display panel, a manufacturing method thereof and a display device are provided. The display panel motherboard includes an array substrate provided with a metal lead layer and an protection layer and an opposing substrate provided with a black matrix layer; alignment rulers are respectively disposed in portions of the metal lead layer and the black matrix layer, corresponding to a sealant region; a protrusion is formed in a portion of the protection layer corresponding to the alignment ruler in the metal lead layer, in a thickness direction; and/or the opposing substrate further comprises a spacer layer, and a protrusion is formed in a portion of the spacer layer corresponding to the alignment ruler in the black matrix layer in the thickness direction.
摘要:
The present disclosure provides a display panel motherboard, including a first substrate and a second substrate arranged opposite to each other to form a cell. A display region and a non-display region surrounding the display region are provided at the first substrate and the second substrate. At the non-display region of the first substrate, a first spacer and a second spacer are arranged sequentially in a direction away from the display region of the first substrate. A vertical distance d1 between an end surface of the first spacer adjacent to the second substrate and a surface of the second substrate adjacent to the first substrate is equal to a vertical distance d2 between an end surface of the second spacer adjacent to the second substrate and the surface of the second substrate adjacent to the first substrate.
摘要:
This disclosure provides a method for filling printing ink in an electrowetting display substrate and a method for producing the electrowetting display panel. The electrowetting display substrate comprises a first substrate. The first substrate has pixel grids formed by pixel walls. The method for filling printing ink in an electrowetting display substrate comprises steps of: filling a mixture of an oil-containing printing ink and a solvent into the pixel grids, wherein the solvent has a boiling temperature lower than that of the oil, and the printing ink is soluble in the solvent; and vaporizing the solvent at a temperature that is lower than the boiling temperature of the oil and higher than or equal to the boiling temperature of the solvent. The method may adjust the filling height of the printing ink effectively, and allow the filling heights of the printing ink in all pixel grids to be substantially the same, so as to enhance the display effect of the electrowetting display panel.
摘要:
The present disclosure provides a liquid crystal display panel and a manufacturing method thereof, a display device. The liquid crystal display panel comprises a display module (1), which comprises a plurality of pixel units, each of the pixel unit including a display area (101) and a non-display area (102), wherein a grounded anti-static film is formed on a part of a light-emitting surface of the display module (1) corresponding to the non-display area (102), and a metal grating film (201) having a polarizing function is formed on a part of the light-emitting surface of the display module (1) corresponding to the display area (101). The display device comprises the liquid crystal display panel as mentioned in the above technical solution.
摘要:
This disclosure provides a method for filling printing ink in an electrowetting display substrate and a method for producing the electrowetting display panel. The electrowetting display substrate comprises a first substrate. The first substrate has pixel grids formed by pixel walls. The method for filling printing ink in an electrowetting display substrate comprises steps of: filling a mixture of an oil-containing printing ink and a solvent into the pixel grids, wherein the solvent has a boiling temperature lower than that of the oil, and the printing ink is soluble in the solvent; and vaporizing the solvent at a temperature that is lower than the boiling temperature of the oil and higher than or equal to the boiling temperature of the solvent. The method may adjust the filling height of the printing ink effectively, and allow the filling heights of the printing ink in all pixel grids to be substantially the same, so as to enhance the display effect of the electrowetting display panel.
摘要:
An alignment material composition, a flattening material composition, a liquid crystal display device and a process for adjusting the display color of the liquid crystal display device. The alignment material composition or the flattening material composition each includes 0.5-20 wt % of an organic additive, which is one or more of spiropyran compounds, Schiff base compounds, and heterocyclic diarylethene compounds. By way of adding the aforesaid organic additive in the orientation layer or the flat layer of the liquid crystal display device, the display color is allowed to be adjusted in a broad color range without affecting other display performances of the liquid crystal display device.