Abstract:
The present invention belongs to the technical field of transparent conductive films and provides a graphene derivative, a transparent conductive film and an organic electroluminescent (EL) device. Methods are also provided for preparation of the graphene derivative and for preparation of an anode of the organic EL device. The graphene derivative exhibits a lower evaporation temperature and a higher work function. The graphene derivative is represented by formula (I): wherein A represents a graphene substrate, n represents the number of the group connected to adjacent two carbon atoms of a carbon ring of the graphene substrate; each X independently represents an electron-withdrawing group; and each R independently represents any one of —R1, —R2, —O—R1, —O—R2, —R1—C6H5, —R2—C6H5, and —R3, wherein each R1 is independently an n-alkyl group having no less than 5 carbon atoms, each R2 is independently a substituted n-alkyl group having no less than 5 carbon atoms in its main chain and having an alkyl substituent, the C6H5 represents a phenyl group which is connected to the end of R1 or R2, and R3 is an aryl group.
Abstract:
The present invention belongs to the technical field of transparent conductive films and provides a graphene derivative, a transparent conductive film and an organic electroluminescent (EL) device. Methods are also provided for preparation of the graphene derivative and for preparation of an anode of the organic EL device. The graphene derivative exhibits a lower evaporation temperature and a higher work function. The graphene derivative is represented by formula (I): wherein A represents a graphene substrate, n represents the number of the group connected to adjacent two carbon atoms of a carbon ring of the graphene substrate; each X independently represents an electron-withdrawing group; and each R independently represents any one of —R1, —R2, —O—R1, —O—R2, —R1—C6H5, —R2—C6H5, and —R3, wherein each R1 is independently an n-alkyl group having no less than 5 carbon atoms, each R2 is independently a substituted n-alkyl group having no less than 5 carbon atoms in its main chain and having an alkyl substituent, the C6H5 represents a phenyl group which is connected to the end of R1 or R2, and R3 is an aryl group.
Abstract:
The present invention discloses a frame for a mask plate and a mask plate. The frame comprises a frame body and a frame through hole passing through the frame body in the thickness direction, a first recessed portion being provided around the frame through hole at an inner periphery of the frame body, the first recessed portion having a continuous bottom surface for providing masks thereon, and a second recessed portion being provided inside the first recessed portion, the second recessed portion being used for providing a shielding film thereon so that the position of the shielding film corresponds to the positions of gaps between adjacent ones of the masks.
Abstract:
A top-emitting organic electroluminescent display panel, a manufacturing method, and a display device. The top-emitting organic electroluminescent display panel comprises: a substrate, a layer of white organic light emitting diodes and a thin film encapsulation layer arranged on the substrate in sequence. The thin film encapsulation layer comprises at least two inorganic thin film layers and at least one organic thin film layer. At least one organic thin film layer is a color filter layer, the color filter layer being arranged between the at least two inorganic thin film layers. Since one of the organic thin film layers in the thin film encapsulation layer is a color filter layer, the color filter layer does not have to be arranged above the thin film encapsulation layer separately, thus reducing the number of film layers, simplifying the film layer structure, reducing manufacturing costs, and improving the luminous efficiency and the display effect.
Abstract:
A top-emitting organic electroluminescent display panel, a manufacturing method, and a display device. The top-emitting organic electroluminescent display panel comprises: a substrate, a layer of white organic light emitting diodes and a thin film encapsulation layer arranged on the substrate in sequence. The thin film encapsulation layer comprises at least two inorganic thin film layers and at least one organic thin film layer. At least one organic thin film layer is a color filter layer, the color filter layer being arranged between the at least two inorganic thin film layers. Since one of the organic thin film layers in the thin film encapsulation layer is a color filter layer, the color filter layer does not have to be arranged above the thin film encapsulation layer separately, thus reducing the number of film lavers, simplifying the film layer structure, reducing manufacturing costs, and improving the luminous efficiency and the display effect.