Abstract:
An improved fuel injection system in an internal combustion engine is described, wherein the system has a discharge outlet for fuel to be injected and brought to a combustion space of the engine, an electrical heating element for heating the fuel directly upstream of the discharge outlet, a fuel entry structure for feeding fuel to the heating element and temperature control structure for controlling the heating by the heating element, at engine temperatures below the optimal operational engine temperature and as a function of engine temperatures influencing the formation of the fuel-air mixture in the combustion space, the fuel being heated to such a degree that the preponderant portion of the amount of fuel to be injected is converted to the gaseous phase not later than immediately after leaving the discharge outlet, and wherein the improvement comprises an internal space in the system, adapted for the flow of fuel therethrough and extending from the fuel entry structure to the discharge outlet, which space is laid out for the smallest fuel volume possible, but in any event has a volume smaller than the volume of fuel injectable during about eight work cycles of the engine while the latter is idling.