Abstract:
An intravascular catheter for nerve modulation through the wall of a blood vessel, comprising an shaft having a proximal end and a distal end and a central axis, a balloon disposed on the shaft and having a proximal end, a distal end, an interior surface, and exterior surface, a lumen defined by the interior surface, a plurality of electrodes disposed on the balloon, and a plurality of elastomeric members disposed between the plurality of electrodes and the balloon and extending between the proximal end of the balloon and the distal end of the balloon.
Abstract:
The disclosure pertains to an intravascular catheter for nerve modulation, comprising an elongate member having a proximal end and a distal end, a balloon having a lumen and a balloon wall, the balloon wall comprising RF permeable sections and non-electrically conductive sections, an electrode disposed within the balloon and extending distally to the furthest distal RF permeable section. The RF permeable sections may comprise a plurality of RF permeable windows, each window having a greater circumferential dimension than an axial dimension. The intravascular system is suited for modulation of renal nerves.
Abstract:
The disclosure pertains to an intravascular catheter for nerve modulation, comprising an elongate member having a proximal end and a distal end, a balloon having a lumen and a balloon wall, the balloon wall comprising RF permeable sections and non-electrically conductive sections, an electrode disposed within the balloon and extending distally to the furthest distal RF permeable section. The RF permeable sections may comprise a plurality of RF permeable windows, each window having a greater circumferential dimension than an axial dimension. The intravascular system is suited for modulation of renal nerves.
Abstract:
A flexible, steerable intravascular catheter includes an elongate flexible shaft having a heterogeneous or multi-zone stiffness profile or structure. A first or distal portion of the catheter shaft may have a substantially constant or distinct stiffness or flexibility, a second, intermediate or transition section is proximal relative to, and less flexible than, the first section, and a third section is proximal relative to, and also less more flexible than, the first section. The third section also includes a substantially constant or distinct stiffness or flexibility. The flexibility or stiffness of the second section varies along its length, e.g., in a substantially linear, step-like or ramp-like manner to provide a smooth or gradual transition between the stiffness of the first or distal section and the flexibility or stiffness of the third or proximal section.