Abstract:
An expandable balloon catheter having an elongate shaft having a distal end region and an expandable balloon coupled to the distal end region of the elongate shaft is disclosed. One or more cutting members are attached to the expandable balloon, wherein at least a portion of each of the one or more cutting members comprises a Curie material having a Curie temperature between 60° and 400° Celsius.
Abstract:
Medical devices and methods for making and using the same are disclosed. An example medical device may include a medical device for renal nerve ablation. The medical device may include an elongate shaft having a distal region. An expandable member may be coupled to the distal region. A plurality of electrodes may be coupled to the expandable member and a single conductive member may be coupled to each electrode. Where one of the plurality of electrodes is active, the remaining electrodes may be inactive and act as ground or return electrodes. The electrode of the plurality of electrodes that is active may change over time.
Abstract:
The disclosure pertains to an intravascular catheter for nerve modulation. The catheter includes an elongate member having a proximal end and a distal end, and an inflatable balloon secured adjacent to the distal end of the elongate member. The balloon includes an exterior surface and an interior surface defining a lumen. The lumen includes a section that is permeable to radiofrequency (RF) radiation. The section extends from the interior surface of the balloon to the exterior surface of the balloon. A first electrode is disposed within the inflatable balloon and indifferent electrodes are disposed external to the inflatable balloon.
Abstract:
Medical devices for sympathetic nerve modulation are disclosed. An example medical device for sympathetic nerve modulation may include a catheter shaft having a distal region. An expandable member may be coupled to the distal region. A flexible circuit assembly may be attached to the expandable member. The flexible circuit assembly may include a first electrode strip, a second electrode strip, and a sensor strip disposed between the first electrode strip and the second electrode strip. The first electrode strip may include a first electrode. The second electrode strip may include a second electrode. The first electrode and the second electrode may define a pair of bipolar electrodes.
Abstract:
Medical devices and methods for making and using medical devices are disclosed. An example medical device may include a guide extension catheter. The guide extension catheter may include a push member having a proximal portion with a proximal stiffness, a distal portion with a distal stiffness different from the proximal stiffness, and a transition portion disposed between the proximal portion and the distal portion. The transition portion may provide a smooth transition between the proximal stiffness and the distal stiffness. The push member may have a first outer diameter. A distal tubular member may be attached to the push member. The distal tubular member may have a second outer diameter larger than the first outer diameter.
Abstract:
A medical device for sympathetic nerve ablation may include a catheter shaft, an expandable member disposed on or coupled to the catheter shaft, and a plurality of elongate electrode assemblies each constructed as a flexible circuit having a plurality of layers. The expandable member may be configured to shift between an unexpanded configuration and an expanded configuration. The plurality of electrode assemblies may be disposed on an outer surface of the expandable member. Each of the plurality of electrode assemblies may include enhanced tear resistance properties such as through the inclusion of a reinforcement structure with one or more of the layers of the electrode assemblies.
Abstract:
A renal nerve ablation device may include an elongate tubular member having a distal region. An expandable member may be coupled to the distal region. One or more active electrodes may be coupled to the expandable member. One or more ground electrodes may be coupled to the expandable member. The one or more active electrodes and/or the one or more ground electrodes may be oriented helically about the length of the expandable member.
Abstract:
Medical devices and methods for making and using medical devices are disclosed. An example medical device may include a catheter shaft. An expandable balloon may be coupled to the catheter shaft. The balloon may be capable of shifting between an unexpanded configuration and an expanded configuration. Electrode assemblies with electrical pathways may be coupled to the balloon. The electrical pathways may be capable of shifting between a serpentine configuration when the balloon is unexpanded to a straighter configuration when the balloon is expanded.
Abstract:
Medical devices and methods for making and using medical devices are disclosed. An example medical device may include a medical device for modulating nerves. The medical device may include an elongate shaft having a distal region. A balloon may be coupled to the distal region. An electrode may be disposed within the balloon. A virtual electrode may be defined on the balloon. The virtual electrode may include a region having a first conductive layer and a second conductive layer.
Abstract:
Medical devices and methods for making and using medical devices are disclosed. An example medical device may include a renal nerve modulation device. The renal nerve modulation device may include an elongate shaft. A balloon may be coupled to the shaft. The balloon may have a hydrophilic electrode region. A sensor may be coupled to the balloon and may be disposed adjacent to the hydrophilic electrode region. An electrode may be coupled to the catheter shaft and may be disposed within the balloon.