Abstract:
Provided is a multi-twisted steel cord for reinforcing a rubber article, the steel cord having cord strength with a small loss as compared to the total strength of filaments constituting the cord and a high rubber penetration. The steel cord includes a plurality of twisted strands in a multi-twisted structure, each strand including a plurality of twisted filaments in two or more layers, in which at least some of the filaments have a tensile strength of 3,000 MPa or more, the steel cord satisfying a filament occupancy of 48% or more and less than 54%, a cord twist angle of 78° or more and less than 84°, an average crossing angle between adjacent filaments other than wrapping filaments of less than 17°, and a gap between adjacent sheath filaments constituting the strand of 0.065 mm or more.
Abstract:
The present invention provides a metal cord having better adhesion to rubber compared to a conventional one, as well as a metal cord-rubber composite and a conveyor belt, including the same. In a metal cord (10) composed of a plurality of metal filaments (11) twisted together, the surfaces of the metal filaments (11) constituting the outermost layer are each provided with a zinc plating layer (16), and the degrees of crystal orientation of the (002) plane and the (102) plane of the surface of the zinc plating layer (16) are less than 120.
Abstract:
Provided are a rubber article reinforcing steel wire that is superior in bending fatigue properties to the related art and has a flat cross-sectional shape, and a rubber article using the wire. In a rubber article reinforcing steel wire 10, a major diameter and a minor diameter are substantially perpendicular to each other. Assuming that the major diameter is W, the minor diameter is T, a straight line that passes through a center of the major diameter in a width direction and is parallel to a minor diameter direction is L1, a straight line that passes through a center of the minor diameter in a width direction and is parallel to a major diameter direction is L2, an intersection point of the L1 and the L2 is a center point C, a region within a half of a distance from the center point C to a surface is a central region Rc, and a region outside the central region Rc is a surface layer region Rs, a Vickers hardness Hvc of the central region Rc is more than a Vickers hardness Hvs of the surface layer region Rs; and assuming that a Vickers hardness on the L1 in the surface layer region Rs is Hv1, and a Vickers hardness on the L2 in the surface layer region Rs is Hv2, relationships represented by Hvc−Hv1≦150, Hvc−Hv2≦150, Hv1/Hvc×100≧85.11, and Hv2/Hvc×100≧79.84 are satisfied.