Abstract:
A scaled voltage supply to supply voltage biases to circuits in voltage zones. The scaled voltage supply includes a master voltage corresponding to a voltage drop across a master-upper rail having a voltage Vdd and a master-lower rail having a voltage Vss=0. Further, the supply includes a voltage-divider network dividing the master voltage Vdd into intermediate voltages αVdd, βVdd, etc., wherein α and β are predetermined constants. These intermediate voltages scale with the master voltage and are supplied to the voltage zones using non-invasive soft rails. In one implementation the soft rails use voltage mirrors to supply the intermediate voltages to the circuits within voltage zones.
Abstract:
Aspects of rail-to-rail line drivers using differential cascode bootstrapping are described. In one embodiment, a differential line driver includes first and second differential driver output legs. The first output leg includes a first p-type cascode stack and a first n-type cascode stack, and the second output leg includes a second p-type cascode stack and a second n-type cascode stack. The differential line driver also includes a differential cascode bootstrap circuit arrangement coupled to an output of the differential line driver. More particularly, the differential cascode bootstrap circuit arrangement is coupled between the first and second differential output driver legs and the output of the differential line driver. According to aspects of the embodiments described herein, differential line drivers with overvoltage protection and rail-to-rail output swings may be achieved. Further, the differential line drivers may be generally smaller, with cascode stack transistors of reduced in size.
Abstract:
Aspects of rail-to-rail line drivers using differential cascode bootstrapping are described. In one embodiment, a differential line driver includes first and second differential driver output legs. The first output leg includes a first p-type cascode stack and a first n-type cascode stack, and the second output leg includes a second p-type cascode stack and a second n-type cascode stack. The differential line driver also includes a differential cascode bootstrap circuit arrangement coupled to an output of the differential line driver. More particularly, the differential cascode bootstrap circuit arrangement is coupled between the first and second differential output driver legs and the output of the differential line driver. According to aspects of the embodiments described herein, differential line drivers with overvoltage protection and rail-to-rail output swings may be achieved. Further, the differential line drivers may be generally smaller, with cascode stack transistors of reduced in size.
Abstract:
A scaled voltage supply to supply voltage biases to circuits in voltage zones. The scaled voltage supply includes a master voltage corresponding to a voltage drop across a master-upper rail having a voltage Vdd and a master-lower rail having a voltage Vss=0. Further, the supply includes a voltage-divider network dividing the master voltage Vdd into intermediate voltages αVdd, βVdd, etc., wherein α and β are predetermined constants. These intermediate voltages scale with the master voltage and are supplied to the voltage zones using non-invasive soft rails. In one implementation the soft rails use voltage mirrors to supply the intermediate voltages to the circuits within voltage zones.