Abstract:
Transmission coordination within multiple user, multiple access, and/or MIMO wireless communications. Within wireless communication systems, there can be various wireless communication devices therein that are not all compliant with a common capability set, communication protocol, communication standard, recommended practice, etc. For example, some communication systems may have some wireless communication devices characterized as ‘legacy’ wireless communication devices, and other wireless communication devices therein may be newer and compliant with newer capability sets, communication protocols, communication standards, recommended practices, etc. In such instances, coordination of transmissions among the various wireless communication devices may be made, when performing simultaneous transmissions, by ensuring that transmissions of devices on different channels is made when aligned on a common boundary of an OFDM symbol. Alternatively, such simultaneous transmissions may be made when offset by some multiple of OFDM symbol duration. When performing non-simultaneous transmissions, transmissions may be made based on channel availability.
Abstract:
Management frame map directed operational parameters within multiple user, multiple access, and/or MIMO wireless communications. A management frame map may be generated within and transmitted from a first wireless communication device to a group of other wireless communication devices. Thereafter, certain subsequently transmitted packets may be analyzed and processed by the receiving wireless communication devices based on that earlier received management frame map. One or more operational parameters are determined for a subsequently transmitted packet based on the previously received management frame map. The operational parameters govern the manner in which at least a portion of the subsequently transmitted packet is processed.
Abstract:
Acknowledgment and/or receiver recovery mechanisms for scheduled responses within multiple user, multiple access, and/or MIMO wireless communications. Explicit scheduling information is provided from a first wireless communication device (e.g., an access point (AP), a transmitting wireless communication device) to a number of other wireless communication devices (e.g., wireless stations (STAs), receiving wireless communication devices) directing those other wireless communication devices a manner by which responses (e.g., acknowledgments (ACKs), block acknowledgments (BACKs), training feedback frames, etc.) are to be provided to the first wireless communication device there from. Such direction may include the order, timing, cluster assignment, etc. by which each respective wireless communication device is to provide its respective response to the first wireless communication device. In the event of the first wireless communication device failing to receive at least one response from at least one of the other wireless communication devices, various communication medium recovery mechanisms may be performed.
Abstract:
Acknowledgment and/or receiver recovery mechanisms for scheduled responses within multiple user, multiple access, and/or MIMO wireless communications. Explicit scheduling information is provided from a first wireless communication device (e.g., an access point (AP), a transmitting wireless communication device) to a number of other wireless communication devices (e.g., wireless stations (STAs), receiving wireless communication devices) directing those other wireless communication devices a manner by which responses (e.g., acknowledgments (ACKs), block acknowledgments (BACKs), training feedback frames, etc.) are to be provided to the first wireless communication device there from. Such direction may include the order, timing, cluster assignment, etc. by which each respective wireless communication device is to provide its respective response to the first wireless communication device. In the event of the first wireless communication device failing to receive at least one response from at least one of the other wireless communication devices, various communication medium recovery mechanisms may be performed.
Abstract:
Multi-user null data packet (MU-NDP) sounding within multiple user, multiple access, and/or MIMO wireless communications. Within communication systems including multiple wireless communication devices (e.g., one or more APs, STAs, etc.), channel sounding of the selected communication links between the various wireless communication devices is performed. A MU-NDP announcement frame is transmitted to and received by various wireless communication devices indicating which of those wireless communication devices (e.g., one, some, or all) are being sounded. Then, respective NDP sounding frames are transmitted via the communication links corresponding to those wireless communication devices (e.g., one, some, or all) are being sounded, and sounding feedback signals are subsequently sent back to the original transmitting wireless communication device. In some instances, after transmission of the MU-NDP announcement frame, a clear to send (CTS) is sent from at least one of the wireless communication devices thereby precipitating the transmission of the NDP sounding frames.
Abstract:
Channel characterization and training within multiple user, multiple access, and/or MIMO wireless communications. Within such communication systems, there can be a number of devices (e.g., STAs) that communicate with a single device (e.g., AP). A multi-cast sounding frame may be transmitted from a transmitting device to a number of receiving devices. Appropriate scheduling or ordering of feedback signals from some or all of the receiving devices may be performed explicitly (e.g., sounding frame sent from the transmitting device to a receiving device) or implicitly (e.g., control information sent from the transmitting device to the receiving device, sounding frame sent to the transmitting device from the receiving device). Such characterization and training is with respect to a channel or path in which data will subsequently follow. Such characterization and training can be performed in accordance with group membership (e.g., with respect to only some of the receiving devices).
Abstract:
Management frame map directed operational parameters within multiple user, multiple access, and/or MIMO wireless communications. A management frame map may be generated within and transmitted from a first wireless communication device to a group of other wireless communication devices. Thereafter, certain subsequently transmitted packets may be analyzed and processed by the receiving wireless communication devices based on that earlier received management frame map. One or more operational parameters are determined for a subsequently transmitted packet based on the previously received management frame map. The operational parameters govern the manner in which at least a portion of the subsequently transmitted packet is processed.
Abstract:
Distributed signal field for communications within multiple user, multiple access, and/or MIMO wireless communications. In accordance with wireless communications, a signal (SIG) field employed within such packets is distributed or partitioned into at least two separate signal fields (e.g., SIG A and SIG B) that are located in different portions of the packet. A first of the SIG fields includes information that may be processed and decoded by all wireless communication devices, and a second of the SIG fields includes information that is specific to one or more particular wireless communication devices (e.g., a specific wireless communication device or a specific subset of the wireless communication devices). The precise locations of the at least first and second SIG fields within a packet may be varied, including placing a second of the SIG fields (e.g., including user-specific information) adjacent to and preceding a data field in the packet.
Abstract:
Beamforming feedback frame formats within multiple user, multiple access, and/or MIMO wireless communications. A transmitting wireless communication device (TX) transmits a sounding frame to one or more receiving wireless communication devices (RXs) using one or more antennae and one or more clusters. Any antenna/cluster combination may be employed in communications between TXs and RXs. The one or more RXs receive/process the sounding frame to determine a type of beamforming feedback frame to be provided to the TX. Any one of a variety of beamforming feedback frame types and a types of information may be contained within a respective beamforming feedback frame including various characteristics of the respective communication channel between the TX and each of the various RXs. A common beamforming feedback frame format may be supported and employed by all such wireless communication devices (e.g., TX and RXs) when performing MU-MIMO operation such as in accordance with IEEE 802.11ac/VHT.
Abstract:
Scheduled clear to send (CTS) for multiple user, multiple access, and/or MIMO wireless communications. Before sending transmissions, a request to send (RTS)/clear to send (CTS) exchange takes place between a transmitting wireless communication device and multiple receiving wireless communication devices may take place therein. The transmitting wireless communication device (e.g., an AP) may generate and transmit a multi-user request to send (mRTS) frame to a number of receiving wireless communication devices (e.g., STAs). The mRTS frame can include information and instructions therein to direct the manner by which all or a subset of the receiving wireless communication devices are to provide CTS responses back to the transmitting wireless communication device. The mRTS frame may be an OFDMA frame, a MU-MIMO frame, or a combination thereof. The CTS responses may be received in accordance with any one or combination of OFDM signaling, OFDMA signaling, and MU-MIMO signaling.