Abstract:
Systems and methods for enabling a group of user equipments located in an emergency area to cooperatively transmit an emergency (SOS) message to a cellular network and to cooperatively receive an SOS message (or response) from the cellular network are provided. Embodiments further provide a scheme for enabling dedicated receivers, and/or user equipments that are attached to the cellular network to serve as relay stations for SOS messages, thereby extending the coverage of the cellular network to the emergency area.
Abstract:
A wireless communication device communicating with a serving base station in a wireless communication environment may have one or more applications running. When seeking to handover from the serving base station to a target base station, the wireless communication device adjusts the configurations of the applications based on the new communication link properties. Likewise, when an application is loaded that prefers communication link properties that exceeds a current communication link's capabilities, the wireless communication device may seek out and hand over to other communication links. By cooperatively coordinating the functionality of installed applications with communication link properties, the wireless communication device can maintain high levels of device and application functionality.
Abstract:
In a Long Term Evolution (LTE) environment, the LTE network can coordinate with a subscribing user equipment to manage offloading to a wireless local area network (WLAN) access point or other base station. In doing so, the serving base station on the LTE network can acquire device capabilities of the user equipment and provide configuration details to the user equipment based on those capabilities. These configuration details may cause the user equipment to monitor one or more triggers, and may configure a scan to be later performed by the user equipment. Based on the monitored trigger, the user equipment can then scan the environment according to the scan configuration defined by the base station, and relay scan results to the base station to make a handover determination.
Abstract:
In an Long Term Evolution (LTE) environment, LTE base stations may collect relevant data from subscribing wireless devices, as well as from nearby LTE base stations and WLAN access points. Based on the collected data, as well as data of the base station itself, the base station may make a determination as to whether to institute offloading of some or all of the subscribing UEs. Rather than independently communicating the offload command to each of the UEs, the base station may issue a broadcast notification that may be decoded by all of the UEs for performing offloading. In order to mitigate a surge of offloading, the base station can include surge prevention parameters in the broadcast message to distribute or reduce offloading.
Abstract:
Systems and methods are disclosed to provide offloading procedures that reduce signaling load. Specifically, embodiments of the present disclosure provide offloading techniques that enable signaling overhead caused by attachment procedures to be avoided when user equipment (UE) reconnects to a cellular network after offloading data to a Wireless Local Area Network (WLAN). According to an embodiment, at least one Public Data Network (PDN) is kept connected through the cellular network access when other PDN connections are offloaded to WLAN. According to another embodiment, a PDN connection through cellular network access is suspended, rather than detached, when data is offloaded to WLAN.