Abstract:
A communication device (alternatively, device) includes a processor configured to support communications with other communication device(s) and to generate and process signals for such communications. In some examples, the device includes a communication interface and a processor, among other possible circuitries, components, elements, etc. to support communications with other communication device(s) and to generate and process signals for such communications. Such a communication device includes a processor configured to perform codeword builder functionality to generate information that undergoes error checking and correction (ECC) and/or forward error correction (FEC) coding. The processor intelligently selects packets from buffers to generate information blocks that undergo ECC and/or FEC coding and transmission and to meet certain latency constraints in conjunction with a predetermined period of time (e.g., a programmable threshold). Such a communication device may be implemented in a point-to-multipoint communication system that services multiple other communication devices.
Abstract:
A communication device (alternatively, device) includes a processor configured to support communications with other communication device(s) and to generate and process signals for such communications. In some examples, the device includes a communication interface and a processor, among other possible circuitries, components, elements, etc. to support communications with other communication device(s) and to generate and process signals for such communications. Such a communication device includes a processor configured to perform codeword builder functionality to generate information that undergoes error checking and correction (ECC) and/or forward error correction (FEC) coding. The processor intelligently selects packets from buffers to generate information blocks that undergo ECC and/or FEC coding and transmission and to meet certain latency constraints in conjunction with a predetermined period of time (e.g., a programmable threshold). Such a communication device may be implemented in a point-to-multipoint communication system that services multiple other communication devices.
Abstract:
Embodiments of a digital up-converter and an N-channel modulator are provided herein. The embodiments of the digital up-converter, in combination with the N-channel modulator, are capable of efficiently filling the spectrum of one or more RF signals with one or more types of information signals. For example, the digital up-converter can fill the spectrum of one or more RF signals with both broadcast and narrowcast video and data signals. In addition, the digital up-converter is capable of flexibly mapping the information signals to one or more channels of the one or more RF signals using a novel, three-level switching architecture.
Abstract:
Embodiments of a digital up-converter and an N-channel modulator are provided herein. The embodiments of the digital up-converter, in combination with the N-channel modulator, are capable of efficiently filling the spectrum of one or more RF signals with one or more types of information signals. For example, the digital up-converter can fill the spectrum of one or more RF signals with both broadcast and narrowcast video and data signals. In addition, the digital up-converter is capable of flexibly mapping the information signals to one or more channels of the one or more RF signals using a novel, three-level switching architecture.