Abstract:
An earth-boring tool includes a tool body, at least one cutting element, and a retaining member comprising a shape memory material (e.g., alloy, polymer, etc.) located between a surface of the tool body and a surface of the cutting element. The shape memory material is configured to transform, responsive to application of a stimulus, from a first solid phase to a second solid phase. The retaining member comprises the shape memory material in the second solid phase, and at least partially retains the at least one cutting element adjacent the tool body. The shape memory material may be trained in a first phase to a first shape, and trained in a second phase to a second shape. The retaining member may be at least partially within a cavity in the first phase, then transformed to the second phase to apply a force securing the cutting element to the tool body.
Abstract:
An earth-boring tool includes a tool body, at least one cutting element, and a retaining member comprising a shape memory material (e.g., alloy, polymer, etc.) located between a surface of the tool body and a surface of the cutting element. The shape memory material is configured to transform, responsive to application of a stimulus, from a first solid phase to a second solid phase. The retaining member comprises the shape memory material in the second solid phase, and at least partially retains the at least one cutting element adjacent the tool body. The shape memory material may be trained in a first phase to a first shape, and trained in a second phase to a second shape. The retaining member may be at least partially within a cavity in the first phase, then transformed to the second phase to apply a force securing the cutting element to the tool body.
Abstract:
An earth-boring tool includes a tool body having an aperture therein defining a nozzle port, a nozzle or nozzle assembly disposed in the nozzle port, and a shape memory material disposed adjacent a surface of at least one component of the nozzle or nozzle assembly. The shape memory material retains at least one component of the nozzle or nozzle assembly by a threadless connection. The threadless connection includes mechanical interference between the shape memory material, the at least one component of the nozzle or nozzle assembly, and the tool body or another component of the nozzle or nozzle assembly. The shape memory material is formulated and configured to transform from a first phase and a first shape upon heating and to transform from a second phase and a second shape upon cooling.
Abstract:
An earth-boring tool includes a tool body having an aperture therein defining a nozzle port, a nozzle or nozzle assembly disposed in the nozzle port, and a shape memory material disposed adjacent a surface of at least one component of the nozzle or nozzle assembly. The shape memory material retains at least one component of the nozzle or nozzle assembly by a threadless connection. The threadless connection includes mechanical interference between the shape memory material, the at least one component of the nozzle or nozzle assembly, and the tool body or another component of the nozzle or nozzle assembly. The shape memory material is formulated and configured to transform from a first phase and a first shape upon heating and to transform from a second phase and a second shape upon cooling.
Abstract:
Cutting elements for earth-boring tools may include a superhard, polycrystalline material and a substrate adjacent to and secured to the superhard, polycrystalline material at an interface. The substrate may include a first region exhibiting a first coefficient of thermal expansion and a second region exhibiting a second, different coefficient of thermal expansion. The first region may be spaced from the superhard, polycrystalline material. The second region may extend from laterally adjacent to at least a portion of the first region to longitudinally between the first region and the superhard, polycrystalline material.
Abstract:
Cutting elements for earth-boring tools may include a superhard, polycrystalline material and a substrate adjacent to and secured to the superhard, polycrystalline material at an interface. The substrate may include a first region exhibiting a first coefficient of thermal expansion and a second region exhibiting a second, different coefficient of thermal expansion. The first region may be spaced from the superhard, polycrystalline material. The second region may extend from laterally adjacent to at least a portion of the first region to longitudinally between the first region and the superhard, polycrystalline material.
Abstract:
A cutting table comprises a polycrystalline hard material and at least one rhenium-containing structure within the polycrystalline hard material and comprising greater than or equal to about 10 weight percent rhenium. A cutting element, an earth-boring tool, and method of forming a cutting element are also described.
Abstract:
A tool for forming or servicing a wellbore includes a first body, a second body, and a retaining member located between a surface of the first body and a surface of the second body. The retaining member at least partially retains the second body with respect to the first body. The retaining member comprises a shape memory material configured to transform, responsive to application of a stimulus, from a first solid phase to a second solid phase. A method of forming a tool for forming or servicing a wellbore includes disposing a retaining member comprising a shape memory material in a space between a first body and a second body and transforming the shape memory material from a first solid phase to a second solid phase by application of a stimulus to cause the retaining member to create a mechanical interference.