摘要:
A first clock signal of frequency F is used to couple data to an off-chip driver (OCD) using a master/slave flip flop (FF), wherein the master latch is clocked with the first clock signal and the slave latch is clocked with the complement of the first clock signal. A second clock signal of frequency F/2 is generated from the first clock signal. The second clock signal is shifted a time equal to substantially one-half the cycle of the first clock signal. In one embodiment, the second clock is shifted using a delay line circuit. In another embodiment, the second clock is shifted using a master/slave FF, wherein the master latch is clocked with the complement of the first clock signal and the slave latch is clocked with the first clock signal. The logic state transitions of the data between edges of the propagating clock thereby reducing coupling to the clock transitions and thus reducing edge jitter.
摘要:
A first clock signal of frequency F is used to couple data to an off-chip driver (OCD) using a master/slave flip flop (FF), wherein the master latch is clocked with the first clock signal and the slave latch is clocked with the complement of the first clock signal. A second clock signal of frequency F/2 is generated from the first clock signal. The second clock signal is shifted a time equal to substantially one-half the cycle of the first clock signal. In one embodiment, the second clock is shifted using a delay line circuit. In another embodiment, the second clock is shifted using a master/slave FF, wherein the master latch is clocked with the complement of the first clock signal and the slave latch is clocked with the first clock signal. The logic state transitions of the data between edges of the propagating clock thereby reducing coupling to the clock transitions and thus reducing edge jitter.
摘要:
A first clock signal of frequency F is used to couple data to an off-chip driver (OCD) using a master/slave flip flop (FF), wherein the master latch is clocked with the first clock signal and the slave latch is clocked with the complement of the first clock signal. A second clock signal of frequency F/2 is generated from the first clock signal. The second clock signal is shifted a time equal to substantially one-half the cycle of the first clock signal. In one embodiment, the second clock is shifted using a delay line circuit. In another embodiment, the second clock is shifted using a master/slave FF, wherein the master latch is clocked with the complement of the first clock signal and the slave latch is clocked with the first clock signal. The logic state transitions of the data between edges of the propagating clock thereby reducing coupling to the clock transitions and thus reducing edge jitter.
摘要:
A first clock signal of frequency F is used to couple data to an off-chip driver (OCD) using a master/slave flip flop (FF), wherein the master latch is clocked with the first clock signal and the slave latch is clocked with the complement of the first clock signal. A second clock signal of frequency F/2 is generated from the first clock signal. The second clock signal is shifted a time equal to substantially one-half the cycle of the first clock signal. In one embodiment, the second clock is shifted using a delay line circuit. In another embodiment, the second clock is shifted using a master/slave FF, wherein the master latch is clocked with the complement of the first clock signal and the slave latch is clocked with the first clock signal. The logic state transitions of the data between edges of the propagating clock thereby reducing coupling to the clock transitions and thus reducing edge jitter.
摘要:
A method, apparatus, and computer instructions for managing a set of signal paths for a chip. A defective signal path within the set of signal paths for the chip is detected. Signals are re-routed through the set of signal paths such that the defective signal path is removed from the set of signal paths and sending signals using remaining data signal paths in the set of signal paths and using an extra signal path in response to detecting the defective signal path.
摘要:
A method, apparatus, and computer instructions for managing a set of signal paths for a chip. A defective signal path within the set of signal paths for the chip is detected. Signals are re-routed through the set of signal paths such that the defective signal path is removed from the set of signal paths and sending signals using remaining data signal paths in the set of signal paths and using an extra signal path in response to detecting the defective signal path.
摘要:
A method, apparatus, and computer instructions for managing a set of signal paths for a chip. A defective signal path within the set of signal paths for the chip is detected. Signals are re-routed through the set of signal paths such that the defective signal path is removed from the set of signal paths and sending signals using remaining data signal paths in the set of signal paths and using an extra signal path in response to detecting the defective signal path.
摘要:
A method, apparatus, and computer instructions for managing a set of signal paths for a chip. A defective signal path within the set of signal paths for the chip is detected. Signals are re-routed through the set of signal paths such that the defective signal path is removed from the set of signal paths and sending signals using remaining data signal paths in the set of signal paths and using an extra signal path in response to detecting the defective signal path.
摘要:
An improved data driver, method, and system for driving data with an improved slew rate and eye opening is provided. In one embodiment, the data driver includes a non-precompensating data driver and a precompensating data driver. The non-precompensating driver generates a non-precompensating output data pulse corresponding to input data. The non-precompensating data driver generates a pulse in response to every input data bit received. The precompensating driver generates the precompensating pulse only in response to a transition from one data state to a second data state between consecutive data bits. The precompensating data pulse is shorter in duration than the non-precompensating output data. The output data from the data drive is the sum of the non-precompensating output data pulse and the precompensating output data pulse.
摘要:
A method for performing memory diagnostics using a programmable diagnostic memory module provides enhanced testability of memory controller and memory subsystem design. The programmable diagnostic memory module includes an interface for communicating with an external diagnostic system, and the interface is used to transfer commands to the memory module to alter various behaviors of the memory module. The altered behaviors may be changing data streams that are written to the memory module to simulate errors, altering the timing and/or loading of the memory module signals, downloading programs for execution by a processor core within the memory module, changing driver strengths of output signals of the memory module, and manipulating in an analog domain, signals at terminals of the memory module such as injecting noise on power supply connections to the memory module. The memory module may emulate multiple selectable memory module types, and may include a complete storage array to provide standard memory module operation.