摘要:
A method and system of compensating for environmental effect when detecting signals using a structural health monitoring system includes collecting baseline data signals for one or more values of the environmental effect variable from signals transmitted along selected paths between transducers in an array attached to the structure. A threshold is selected based on the baseline data for determining if the signal is detected. Current data signals are collected and matched to the best fit baseline data. The value of the environmental effect variable is determined on the basis of the matching. A signal is detected according to the selected threshold.
摘要:
A method useful in structural health monitoring (SHM) systems for detecting damages in metal structures includes extracting the zero-order symmetric and anti-symmetric mode signal components from each of a plurality of current sensor signals of an array of transducers mounted on the structure, matching the extracted signal components with corresponding signal components of a plurality of baseline sensor signals previously detected in the structure, computing respective indices IS0 and IA0 for each of the matched extracted current and baseline signal components based on respective signal energies thereof, and determining the presence of a damage in the structure if either of the indices IS0 and IA0 of a plurality of neighboring sensor paths of the structure is greater than a selected threshold value.
摘要:
A method and system of compensating for environmental effect when detecting signals using a structural health monitoring system includes collecting baseline data signals for one or more values of the environmental effect variable from signals transmitted along selected paths between transducers in an array attached to the structure. A threshold is selected based on the baseline data for determining if the signal is detected. Current data signals are collected and matched to the best fit baseline data. The value of the environmental effect variable is determined on the basis of the matching. A signal is detected according to the selected threshold.
摘要:
Methods and apparatuses for detecting fastener loosening. Sensors query a structure at a baseline value of an environment variable, such as temperature, and this baseline signal is stored for later use. Subsequently, users can query the structure remotely and at any time, and the signals from these queries are compared to the stored baseline signal. In some embodiments, an index is calculated, and the system determines that one or more fasteners have come loose if the calculated index exceeds a predetermined threshold value. It is desirable to select a time window within which the query signal is most sensitive to fastener loosening but least sensitive to variations in the environment variable. Accordingly, embodiments of the invention include methods and apparatuses for determining an optimal time window for use in calculating the above described index.
摘要:
A method for adjusting signal data detected in a structural health monitoring (SHM) system to compensate for the effects of environmental variables acting thereon includes constructing a baseline data space comprised of sets of signal data. Current signal data sets are collected for comparison to the baseline data space. The collected current signal data sets are amended to best match baseline signal data sets in the baseline data space. A set of indices are computed for comparing the amended current signal data set to the baseline signal data sets. A threshold for detection is determined by outlier detection for the computed indices. A signal in the collected signal data set is determined to be detected on the basis of the threshold. A representation of the detected signal strength is provided on the basis of the computed indices.
摘要:
Methods and apparatuses for detecting fastener loosening. Sensors query a structure at a baseline value of an environment variable, such as temperature, and this baseline signal is stored for later use. Subsequently, users can query the structure remotely and at any time, and the signals from these queries are compared to the stored baseline signal. In some embodiments, an index is calculated, and the system determines that one or more fasteners have come loose if the calculated index exceeds a predetermined threshold value. It is desirable to select a time window within which the query signal is most sensitive to fastener loosening but least sensitive to variations in the environment variable. Accordingly, embodiments of the invention include methods and apparatuses for determining an optimal time window for use in calculating the above described index.
摘要:
A method for adjusting signal data detected in a structural health monitoring (SHM) system to compensate for the effects of environmental variables acting thereon includes constructing a baseline data space comprised of sets of signal data. Current signal data sets are collected for comparison to the baseline data space. The collected current signal data sets are amended to best match baseline signal data sets in the baseline data space. A set of indices are computed for comparing the amended current signal data set to the baseline signal data sets. A threshold for detection is determined by outlier detection for the computed indices. A signal in the collected signal data set is determined to be detected on the basis of the threshold. A representation of the detected signal strength is provided on the basis of the computed indices.
摘要:
Detecting damage in a structure without comparing sensor signals to a baseline signal. Once a structure is interrogated, a process based on a Gaussian Mixture Model is applied to the resulting data set, resulting in quantities for which Mahalanobis distances and Euclidian distances can be determined. A damage index is then determined based on the calculated Euclidian distance. A high value of this damage index coupled with an abrupt change in Mahalanobis distance has been found to be a reliable indicator of damage. Other embodiments may employ a baseline, but determine damage according to ratios of energy values between current and baseline signals.
摘要:
Detecting damage in a structure without comparing sensor signals to a baseline signal. Once a structure is interrogated, a process based on a Gaussian Mixture Model is applied to the resulting data set, resulting in quantities for which Mahalanobis distances and Euclidian distances can be determined. A damage index is then determined based on the calculated Euclidian distance. A high value of this damage index coupled with an abrupt change in Mahalanobis distance has been found to be a reliable indicator of damage. Other embodiments may employ a baseline, but determine damage according to ratios of energy values between current and baseline signals.
摘要:
Predicting the probability of detection of major and minor defects in a structure includes simulating a plurality of N defects at random locations in a region specified by an array of transducers. Defect size is incremented until it intersects one path between two transducers. The defect size is again incremented until it intersects two or more adjacent paths between pairs of transducers. The number of major defects up to a selected size is determined by the total number of single path intersections by defects up to the selected size. The number of minor defects up to a selected size is determined on the basis of the total number of defects intersecting two or more paths up to the selected size. The probability of detection up to a selected size is the cumulative number of major or minor defects up to the selected size normalizing by N.