摘要:
A method for determining local defocus distance in a scanned image of a non-planar original object is provided comprising scanning at least a portion of the non-planar original object to produce first scanned image data at a first focal plane and scanning same the at least a portion of the non-planar original object to produce at least second scanned image data at a second focal plane. The first scanned image data is different from the second scanned image data wherein a distance between the first focal plane and the second focal plane is a predetermined quantity. The method further comprises estimating an out-of-focus distance of the object from the first and the second scanned image data.
摘要:
A method for determining local defocus distance in a scanned image of a non-planar original object is provided comprising scanning at least a portion of the non-planar original object to produce first scanned image data at a first focal plane and scanning same the at least a portion of the non-planar original object to produce at least second scanned image data at a second focal plane. The first scanned image data is different from the second scanned image data wherein a distance between the first focal plane and the second focal plane is a predetermined quantity. The method further comprises estimating an out-of-focus distance of the object from the first and the second scanned image data.
摘要:
Compensation for rendering device non-uniformities is provided for halftoned images. A spatially dependent tone reproduction curve (TRC) provides compensation values. Pixel location information is used to access TRC values. For example, the values are modification values. The modification values are added to the pixel values to generate combined values. Quantization is applied to the combined values to prepare compensated image data for rendering. For example, Rank Ordered Error Diffusion is applied to the combined values. The combined values may include diffused error from previously processed pixels. Gray values may be estimated for the respective pixels. The estimated gray values may be used to access compensation information from a TRC that is both spatially and gray value dependent. Mathematical basis decomposition is used to reduce TRC memory requirements. For example, Discrete Cosine Transformation, Singular Value Decomposition or Principal Component Analysis is used to determine a compact form for the TRC.
摘要:
An optical scanning device is provided which comprises a laser array which emits laser beams including a number of beams (1, 2, . . . , n) writing a swath of rasters having a laser scanning section which, when an interlaced scanning period i, is set to a natural number between beams which are adjacent in a sub-scanning direction, scans the laser beams emitted from the laser array with the interlaced scanning period i. The laser scanning section can scan the laser beams such that the beam number n and the interlaced scanning period i are relatively prime natural numbers, and n>i. In a first scan, data for raster lines (1, 2, . . . , n) can be selectively associated with a respective first exposure. At a second scan, data for raster lines (i+1, i+2, . . . , n) can be selectively associated with a respective second exposure and data for raster lines (n+1, n+2, . . . , n+i) can be selectively associated with a respective first exposure. The first respective exposure for raster lines (i+1, i+2, . . . , n) is not equal to the respective second exposure for raster lines (i+1, i+2, . . . , n).
摘要:
A method of adjusting a TRC of an image is provided. The method involves receiving an image at an input resolution, resampling the image to a processing resolution if the imput resolution and the processing resolution are not same, processing the image using rank-ordered error diffusion, and resampling the processed image to a desired output resolution for the image if the processing resolution and the output resolution are not same.
摘要:
A method for avoiding objectionable moiré in a color image can include identifying a problematic excitation angle associated with a problematic excitation in a marking process or in the color image and selecting a set of at least two halftone screens for rendering at least two separations of the color image wherein the set of screens is selected to avoid including significant screen fundamental, harmonic and beat frequencies at angles closer than about 1 degree of the identified problematic excitation angle. Halftoning the color image according to the selected set of screens avoids objectionable moiré associated with the problematic excitation.
摘要:
A target pixel is processed according to a blended combination of two or more error diffusion techniques. For example, the two or more techniques may include a standard error diffusion technique and rank ordered error diffusion. Additionally, or alternatively, a quantization resolution is selected for the target pixel based on information regarding the pixel. For example, a quantization resolution is selected based on a relative position of the target pixel or based on a value of the target pixel and/or values of pixels neighboring the target pixel.
摘要:
One aspect of the invention provides a method of halftoning an image which involves determining a quantization error for a selected target pixel of an image, selecting a diffusion mask, the mask relating to the target pixel and pixels neighboring thereto, receiving a first pair of neighboring pixel values for a first pixel pair including a first neighboring pixel and a second neighboring pixel, and receiving a second pair of neighboring pixel values for a second pixel pair including a third neighboring pixel and a fourth neighboring pixel. The method further involves determining a ranking order of the first, second, third and fourth neighboring pixels by comparing pixel values of the first, second, third and fourth neighboring pixels, and diffusing error to at least one of the first, second, third and fourth neighboring pixels based on the determined ranking order of the first, second, third and fourth neighboring pixels.
摘要:
Optimal rehalftone screen frequencies are found by searching frequency space for points that are maximally spaced from significant frequency components of an input image halftone screen or screens. Selecting a rehalftone screen having a maximally spaced frequency produces moiré of the highest frequency possible. High frequency moiré are visually unobjectionable. Optimal rehalftone frequencies may be found near the maximally spaced points where system or other constraints limit the usefulness of the maximally spaced points. Rehalftone screen frequencies in the range of about 1.4 to about 1.8 times the fundamental frequency of the input image halftone screen are often optimal. A rehalftone screen frequency of 1.5 times the fundamental frequency of the input image halftone screen is often optimal when the input image is monochrome and uses a dot screen.
摘要:
An optical scanning device is provided which comprises a laser array which emits laser beams including a number of beams (1, 2, . . . , n) writing a swath of rasters having a laser scanning section which, when an interlaced scanning period i, is set to a natural number between beams which are adjacent in a sub-scanning direction, scans the laser beams emitted from the laser array with the interlaced scanning period i. The laser scanning section can scan the laser beams such that the beam number n and the interlaced scanning period i are relatively prime natural numbers, and n>i. In a first scan, data for raster lines (1, 2, . . . , n) can be selectively associated with a respective first exposure. At a second scan, data for raster lines (i+1, i+2, . . . , n) can be selectively associated with a respective second exposure and data for raster lines (n+1, n+2, . . . , n+i) can be selectively associated with a respective first exposure. The first respective exposure for raster lines (i+1, i+2, . . . , n) is not equal to the respective second exposure for raster lines (i+1, i+2, . . . , n).