Convertible Biplane Aircraft for Capturing Drones

    公开(公告)号:US20200290737A1

    公开(公告)日:2020-09-17

    申请号:US16743203

    申请日:2020-01-15

    Abstract: An aircraft for capturing drones includes an airframe having a drone channel with first and second wings extending outboard thereof. A two-dimensional distributed thrust array includes a plurality of propulsion assemblies coupled to each of the first and second wings such that the rotor disc of each propulsion assembly is outboard of the drone channel. A flight control system is coupled to the airframe and is operable to independently control each of the propulsion assemblies. A mesh bag is coupled to the drone channel forming a drone capture net. The aircraft is configured to convert between thrust-borne lift in a VTOL orientation and wing-borne lift in a biplane orientation. The aircraft is also configured to overtake a drone during flight in the biplane orientation such that the drone passes through the drone channel into the mesh bag, thereby capturing the drone in the drone capture net.

    Compound Helicopters having Auxiliary Propulsive Systems

    公开(公告)号:US20200307779A1

    公开(公告)日:2020-10-01

    申请号:US16365583

    申请日:2019-03-26

    Abstract: A fully compounding rotorcraft includes a fuselage having first and second wings extending therefrom and configured to provide lift compounding responsive to forward airspeed. A twin boom includes first and second tail boom members that extend aftward from the first and second wings. An empennage is coupled between the aft ends of the tail boom members. An anti-torque system includes a tail rotor that is rotatably coupled to the empennage. An engine is disposed within the fuselage and is configured to provide torque to a main rotor assembly via an output shaft and a main rotor gearbox. An auxiliary propulsive system is coupled to the fuselage and is configured to generate a propulsive thrust to offload at least a portion of a thrust requirement from the main rotor during forward flight, thereby providing propulsion compounding to increase the forward airspeed of the rotorcraft.

    Centerline tiltrotor
    7.
    发明授权

    公开(公告)号:US11225323B2

    公开(公告)日:2022-01-18

    申请号:US16541561

    申请日:2019-08-15

    Abstract: Embodiments are directed to a rotorcraft comprising a body having a longitudinal axis, a wing coupled to the body, a single tiltrotor assembly pivotally coupled to the body, and the tiltrotor assembly configured to move between a position generally perpendicular to the longitudinal axis during a vertical flight mode and a position generally parallel to the longitudinal axis during a horizontal flight mode. The rotorcraft may further comprise an anti-torque system configured to counteract torque generated by the tiltrotor assembly during vertical flight. The rotorcraft may further comprise a center of gravity compensation system configured to manage a rotorcraft center of gravity during movement of the tiltrotor assembly between the vertical flight mode and the horizontal flight mode.

    TAIL SITTER STOP-FOLD AIRCRAFT
    8.
    发明申请

    公开(公告)号:US20210253239A1

    公开(公告)日:2021-08-19

    申请号:US16795426

    申请日:2020-02-19

    Abstract: Embodiments are directed to a high speed, vertical lift aircraft that has vertical take-off and landing (VTOL) capability and is capable of converting to a forward-flight mode (e.g., prop-mode). The rotors blades can be folded for high speed forward flight propelled by a turbine engine (e.g., jet-mode). The rotor blades on the tail sitter aircraft have a “stop-fold” capability, which means that the rotor blades are stopped in flight and folded back to reduce drag. This allows the tail sitter aircraft to achieve a higher speed than a tilt-rotor aircraft. In some embodiments, the tail sitter aircraft achieves both rotor-borne flight and jet-borne flight by having two separate engines. An additional advantage of the tail-sitter aircraft versus a horizontally oriented fixed engine aircraft is that supplemental jet thrust can be used for take-off if desired.

    Centerline Tiltrotor
    9.
    发明申请

    公开(公告)号:US20210047029A1

    公开(公告)日:2021-02-18

    申请号:US16541561

    申请日:2019-08-15

    Abstract: Embodiments are directed to a rotorcraft comprising a body having a longitudinal axis, a wing coupled to the body, a single tiltrotor assembly pivotally coupled to the body, and the tiltrotor assembly configured to move between a position generally perpendicular to the longitudinal axis during a vertical flight mode and a position generally parallel to the longitudinal axis during a horizontal flight mode. The rotorcraft may further comprise an anti-torque system configured to counteract torque generated by the tiltrotor assembly during vertical flight. The rotorcraft may further comprise a center of gravity compensation system configured to manage a rotorcraft center of gravity during movement of the tiltrotor assembly between the vertical flight mode and the horizontal flight mode.

    Compound Helicopters having Hybrid Propulsion Engines

    公开(公告)号:US20200309066A1

    公开(公告)日:2020-10-01

    申请号:US16365573

    申请日:2019-03-26

    Abstract: A hybrid propulsion engine for a rotorcraft includes a core turboshaft engine having a gas path and an output shaft that provides torque to a main rotor. A fan module is disposed relative to the core turboshaft engine and is coupled to the output shaft. The fan module has a bypass air path that is independent of the gas path. A thrust nozzle is configured to mix exhaust gases from the core turboshaft engine with bypass air from the fan module and to discharge the mixture to provide propulsive thrust. In a turboshaft configuration, the fan module is closed to prevent the flow of bypass air therethrough such that the thrust nozzle does not provide propulsive thrust. In a turboshaft and turbofan configuration, the fan module is open allowing the flow of bypass air therethrough such that the thrust nozzle provides propulsive thrust, thereby supplying propulsion compounding for the rotorcraft.

Patent Agency Ranking