摘要:
A computer-implemented method is provided for physical face cloning to generate a synthetic skin. Rather than attempt to reproduce the mechanical properties of biological tissue, an output-oriented approach is utilized that models the synthetic skin as an elastic material with isotropic and homogeneous properties (e.g., silicone rubber). The method includes capturing a plurality of expressive poses from a human subject and generating a computational model based on one or more material parameters of a material. In one embodiment, the computational model is a compressible neo-Hookean material model configured to simulate deformation behavior of the synthetic skin. The method further includes optimizing a shape geometry of the synthetic skin based on the computational model and the captured expressive poses. An optimization process is provided that varies the thickness of the synthetic skin based on a minimization of an elastic energy with respect to rest state positions of the synthetic skin.
摘要:
A computer-implemented method is provided for physical face cloning to generate a synthetic skin. Rather than attempt to reproduce the mechanical properties of biological tissue, an output-oriented approach is utilized that models the synthetic skin as an elastic material with isotropic and homogeneous properties (e.g., silicone rubber). The method includes capturing a plurality of expressive poses from a human subject and generating a computational model based on one or more material parameters of a material. In one embodiment, the computational model is a compressible neo-Hookean material model configured to simulate deformation behavior of the synthetic skin. The method further includes optimizing a shape geometry of the synthetic skin based on the computational model and the captured expressive poses. An optimization process is provided that varies the thickness of the synthetic skin based on a minimization of an elastic energy with respect to rest state positions of the synthetic skin.
摘要:
A computer-implemented method for invariant-based normal estimation. The method includes calculating a set of measured invariants for a point associated with a surface of an object, where the set of measured invariants is based on pixel information that includes lighting information, calculating one or more sets of estimated invariants for the point associated with the surface of the object, where each set of estimated invariants is based on a known lighting environment for the object and a different normal for the point associated with the surface of the object, and determining a first normal for the point associated with the surface of the object that results in the set of measured invariants corresponding to a first set of estimated invariants.
摘要:
Techniques are provided for mesoscopic geometry modulation. A first set of mesoscopic details associated with an object is determined by applying a filter to an image of an object. Mesoscopic details included in the first set of mesoscopic details are detectable in the image of the object and are not detectable when generating a coarse geometry reconstruction of the object. A three-dimensional model for the object is generated by modulating the coarse geometry with the first set of mesoscopic details.
摘要:
A computer-implemented method for generating a three-dimensional model of an object. The method includes generating a coarse geometry mesh of the object; calculating an optimization for the coarse geometry mesh based on photometric consistency and surface consistency associated with the coarse geometry mesh; and refining the coarse geometry mesh with the optimization to generate the three-dimensional model for the object.
摘要:
A method for calibrating a plurality of cameras. The method includes: for each camera, detecting a projection of a proxy object included in an image captured by the camera; for each camera, detecting surface features associated with the proxy object included in the image captured by the camera; for each combination of two different cameras, determining a correspondence set that maps the detected surface features associated with the proxy object included in the image captured by one camera to the detected surface features associated with the proxy object included in the image captured by the other camera; and generating correspondences between features based on relationships between the different correspondence sets, wherein the correspondences between features can be processed by a camera calibration toolbox to generate camera calibration parameters for each camera in the plurality of cameras.
摘要:
Techniques are disclosed for creating digital assets that can be used to personalize themed products. For example, a workflow and pipeline used to generate a 3D model from digital images of a person's face and to manufacture a personalized, physical figurine customized with the 3D model are disclosed. The 3D model of the person's face may be simplified to match a topology of a desired figurine. While the topology is deformed to match that of the figurine, the 3D model retains the geometry of the child's face. Simplifying the topology of the 3D model in this manner allows the mesh to be integrated with or attached to a mesh representing desired figurine.