摘要:
Medical patient monitoring devices that have the capability of detecting the physical proximity of a clinician are disclosed. The medical patient monitoring devices may be configured to perform a selected action when the presence of a clinician is detected. Systems and methods for facilitating communication between medical devices that use different medical communication protocol formats are also disclosed. For example, a medical communication protocol translator can be configured to receive an input message formatted according to a first protocol format from a first medical device and to output an output message formatted according to a second protocol format supported by a second medical device using a set of translation rules. Medical monitoring reporting systems are also disclosed. The medical monitoring reporting systems may be used to analyze a stored collection of physiological parameter data to simulate the effect of changing various medical monitoring options.
摘要:
Medical patient monitoring devices that have the capability of detecting the physical proximity of a clinician are disclosed. The medical patient monitoring devices may be configured to perform a selected action when the presence of a clinician is detected. Systems and methods for facilitating communication between medical devices that use different medical communication protocol formats are also disclosed. For example, a medical communication protocol translator can be configured to receive an input message formatted according to a first protocol format from a first medical device and to output an output message formatted according to a second protocol format supported by a second medical device using a set of translation rules. Medical monitoring reporting systems are also disclosed. The medical monitoring reporting systems may be used to analyze a stored collection of physiological parameter data to simulate the effect of changing various medical monitoring options.
摘要:
A method of storing streaming physiological information obtained from a medical patient in a multi-patient monitoring environment includes receiving identification information, retrieving parameter descriptors, creating a round-robin database file, receiving a data stream, and using a predetermined data rate to map the data stream to locations in the round-robin database file.
摘要:
Medical patient monitoring devices that have the capability of detecting the physical proximity of a clinician are disclosed. The medical patient monitoring devices may be configured to perform a first selected action when the presence of a clinician is detected in a first detection area, and to perform a second selected action when the presence of the clinician is detected in a second detection area. The medical patient monitoring devices may be configured to determine whether a clinician is present in a detection area based on the strength of a signal from a clinician token, and based on a signal strength adjustment value associated with the clinician token. When the presence of a clinician is detected in a detection area, the medical patient monitoring devices may be configured to perform a predetermined action that is determined from a remote database communicatively coupled thereto.
摘要:
Physiological information can be stored in a dynamic round-robin database. Parameter descriptors may be used to identify parameter values in the records. The parameter values can be dynamically updated by changing the parameter descriptors. In addition, the size of files used in the database can be dynamically adjusted to account for patient condition. In certain implementations, the round-robin database can be adaptive, such that an amount of data stored in the database is adapted based on patient condition and/or signal condition. Additionally, medical data obtained from a clinical network of physiological monitors can be stored in a journal database. The medical data can include device events that occurred in response to clinician interactions with one or more medical devices and device-initiated events, such as alarms and the like. The journal database can be analyzed to derive statistics, which may be used to improve clinician and/or hospital performance.
摘要:
A method of storing streaming physiological information obtained from a medical patient in a multi-patient monitoring environment includes receiving identification information, retrieving parameter descriptors, creating a round-robin database file, receiving a data stream, and using a predetermined data rate to map the data stream to locations in the round-robin database file.
摘要:
Medical patient monitoring devices that have the capability of detecting the physical proximity of a clinician are disclosed. The medical patient monitoring devices may be configured to perform a first selected action when the presence of a clinician is detected in a first detection area, and to perform a second selected action when the presence of the clinician is detected in a second detection area. The medical patient monitoring devices may be configured to determine whether a clinician is present in a detection area based on the strength of a signal from a clinician token, and based on a signal strength adjustment value associated with the clinician token. When the presence of a clinician is detected in a detection area, the medical patient monitoring devices may be configured to perform a predetermined action that is determined from a remote database communicatively coupled thereto.
摘要:
Physiological information obtained from a medical patient can be stored in a dynamic round-robin database. Parameter descriptors may be used to identify parameter values in the records. The parameter values can be dynamically updated by changing the parameter descriptors to provide for a flexible database. In addition, the size of files used in the database can be dynamically adjusted to account for patient condition. In certain implementations, the round-robin database can be adaptive, such that an amount of data stored in the database is adapted based on patient condition and/or signal condition. Additionally, medical data obtained from a clinical network of physiological monitors can be stored in a journal database. The medical data can include device events that occurred in response to clinician interactions with one or more medical devices and device-initiated events, such as alarms and the like. The journal database can be analyzed to derive statistics, which may be used to improve clinician and/or hospital performance.
摘要:
A data capture system utilizes a sensor with emitters adapted to transmit light into a fleshy medium and a detector adapted to generate intensity signals in response to receiving light after absorption by the fleshy medium. A monitor is configured to input the intensity signals, generate digitized signals from the intensity signals at a sampling rate and compute at least one physiological parameter responsive to magnitudes of the digitized signals. A data storage device is integrated with the monitor and is adapted to record data derived from the digitized signals on a removable storage media at the sampling rate.
摘要:
This disclosure describes, among other features, systems and methods for using multiple physiological parameter inputs to determine multiparameter confidence in respiratory rate measurements. For example, a patient monitoring system can programmatically determine multiparameter confidence in respiratory rate measurements obtained from an acoustic sensor based at least partly on inputs obtained from other non-acoustic sensors or monitors. The patient monitoring system can output a multiparameter confidence indication reflective of the programmatically-determined multiparameter confidence. The multiparameter confidence indication can assist a clinician in determining whether or how to treat a patient based on the patient's respiratory rate.