Yarn materials and fibers including starch-based polymeric materials

    公开(公告)号:US11879058B2

    公开(公告)日:2024-01-23

    申请号:US17327590

    申请日:2021-05-21

    申请人: BiologiQ, Inc.

    IPC分类号: C08L3/02

    CPC分类号: C08L3/02 C08L2205/03

    摘要: Described are very high molecular weight (e.g., over 2 million, such as 3-20 million g/mol) starch-based materials, and formulations including such, which can be spun in spunbond, melt blown, yarn, or similar processes. Even with such very high molecular weights, the formulations can be processed at commercial line speeds, with spinneret shear viscosities of 1000 sec−1, without onset of melt flow instability. The starch-based material can be blended with one or more thermoplastic materials having higher melt flow index value(s), which serve as a diluent and plasticizer, allowing the very viscous starch-based component to be spun under such conditions. The particular melt flow index characteristics of the thermoplastic diluent material can be selected based on what type of process is being used (e.g., spunbond, melt blown, yarn, etc.). The starch-based material may exhibit high shear sensitivity, strain hardening behavior, and/or very high critical shear stress (e.g., at least 125 kPa).

    SPUNBOND NONWOVEN MATERIALS AND FIBERS INCLUDING STARCH-BASED POLYMERIC MATERIALS

    公开(公告)号:US20210277556A1

    公开(公告)日:2021-09-09

    申请号:US17327536

    申请日:2021-05-21

    申请人: BiologiQ, Inc.

    IPC分类号: D04H3/015

    摘要: Described are very high molecular weight (e.g., over 2 million, such as 3-20 million g/mol) starch-based materials, and formulations including such, which can be spun in spunbond, melt blown, yarn, or similar processes. Even with such very high molecular weights, the formulations can be processed at commercial line speeds, with spinneret shear viscosities of 1000 sec−1, without onset of melt flow instability. The starch-based material can be blended with one or more thermoplastic materials having higher melt flow index value(s), which serve as a diluent and plasticizer, allowing the very viscous starch-based component to be spun under such conditions. The particular melt flow index characteristics of the thermoplastic diluent material can be selected based on what type of process is being used (e.g., spunbond, melt blown, yarn, etc.). The starch-based material may exhibit high shear sensitivity, strain hardening behavior, and/or very high critical shear stress (e.g., at least 125 kPa).

    MELT BLOWN NONWOVEN MATERIALS AND FIBERS INCLUDING STARCH-BASED POLYMERIC MATERIALS

    公开(公告)号:US20210269944A1

    公开(公告)日:2021-09-02

    申请号:US17327577

    申请日:2021-05-21

    申请人: BiologiQ, Inc.

    IPC分类号: D01D5/098 D01F9/00

    摘要: Described are very high molecular weight (e.g., over 2 million, such as 3-20 million g/mol) starch-based materials, and formulations including such, which can be spun in spunbond, melt blown, yarn, or similar processes. Even with such very high molecular weights, the formulations can be processed at commercial line speeds, with spinneret shear viscosities of 1000 sec−1, without onset of melt flow instability. The starch-based material can be blended with one or more thermoplastic materials having higher melt flow index value(s), which serve as a diluent and plasticizer, allowing the very viscous starch-based component to be spun under such conditions. The particular melt flow index characteristics of the thermoplastic diluent material can be selected based on what type of process is being used (e.g., spunbond, melt blown, yarn, etc.). The starch-based material may exhibit high shear sensitivity, strain hardening behavior, and/or very high critical shear stress (e.g., at least 125 kPa).

    THERMOPLASTIC STARCH FORMULATIONS WITH ADDITIVES FOR PERFORMANCE ENHANCEMENTS

    公开(公告)号:US20240150559A1

    公开(公告)日:2024-05-09

    申请号:US18492611

    申请日:2023-10-23

    申请人: BiologiQ, Inc.

    摘要: Thermoplastic starch-based materials formed as a reactive extrusion product from one or more starches, plasticizers, with the addition of a diacid, diglycidyl ether, silicone and/or a glyceride additive added during gelatinization of the starch and plasticizer, before blending of such starch-based polymeric material with any other polymer (e.g., polyester biopolymers, polyolefins, polyamides, etc.). Silicones, where added, may alternatively be added after formation of the thermoplastic starch, e.g., as part of a masterbatch, when blending with another polymer. Addition of silicone reduces glycerin migration and smoke generation, particularly when processing such compositions to form nonwovens. Addition of glycerides (e.g., triglycerides) can increase hydrophobicity of the resulting starch-based polymeric material. Addition of the diacid can reduce molecular weight, while diglycidyl ether addition can build such molecular weight back up, resulting in a narrower molecular weight distribution, and improved processability of the resulting starch-based polymeric material, particularly for nonwoven applications.

    YARN MATERIALS AND FIBERS INCLUDING STARCH-BASED POLYMERIC MATERIALS

    公开(公告)号:US20210277207A1

    公开(公告)日:2021-09-09

    申请号:US17327590

    申请日:2021-05-21

    申请人: BiologiQ, Inc.

    IPC分类号: C08L3/02

    摘要: Described are very high molecular weight (e.g., over 2 million, such as 3-20 million g/mol) starch-based materials, and formulations including such, which can be spun in spunbond, melt blown, yarn, or similar processes. Even with such very high molecular weights, the formulations can be processed at commercial line speeds, with spinneret shear viscosities of 1000 sec−1, without onset of melt flow instability. The starch-based material can be blended with one or more thermoplastic materials having higher melt flow index value(s), which serve as a diluent and plasticizer, allowing the very viscous starch-based component to be spun under such conditions. The particular melt flow index characteristics of the thermoplastic diluent material can be selected based on what type of process is being used (e.g., spunbond, melt blown, yarn, etc.). The starch-based material may exhibit high shear sensitivity, strain hardening behavior, and/or very high critical shear stress (e.g., at least 125 kPa).