Blending of small particle starch powder with synthetic polymers for increased strength and other properties

    公开(公告)号:US11674014B2

    公开(公告)日:2023-06-13

    申请号:US16925747

    申请日:2020-07-10

    Applicant: BiologiQ, Inc.

    CPC classification number: C08K5/1545

    Abstract: Described herein are blends of starch or starch-based materials with polymeric materials, where the starch or starch-based material is intimately blended with the polymeric material, so as to exhibit very small particles sizes (e.g., less than 2 μm, or less than 1 μm) for the starch or starch-based material in the matrix of the polymeric material. Such intimate dispersion of very small particles provides for far more of the particles dispersed more evenly throughout the matrix of the polymeric material, which may enhance various performance characteristics of the blended composite material. Methods of producing articles from such blends exhibiting such small particles and excellent dispersion are also disclosed.

    SPUNBOND NONWOVEN MATERIALS AND FIBERS INCLUDING STARCH-BASED POLYMERIC MATERIALS

    公开(公告)号:US20210277556A1

    公开(公告)日:2021-09-09

    申请号:US17327536

    申请日:2021-05-21

    Applicant: BiologiQ, Inc.

    Abstract: Described are very high molecular weight (e.g., over 2 million, such as 3-20 million g/mol) starch-based materials, and formulations including such, which can be spun in spunbond, melt blown, yarn, or similar processes. Even with such very high molecular weights, the formulations can be processed at commercial line speeds, with spinneret shear viscosities of 1000 sec−1, without onset of melt flow instability. The starch-based material can be blended with one or more thermoplastic materials having higher melt flow index value(s), which serve as a diluent and plasticizer, allowing the very viscous starch-based component to be spun under such conditions. The particular melt flow index characteristics of the thermoplastic diluent material can be selected based on what type of process is being used (e.g., spunbond, melt blown, yarn, etc.). The starch-based material may exhibit high shear sensitivity, strain hardening behavior, and/or very high critical shear stress (e.g., at least 125 kPa).

    MELT BLOWN NONWOVEN MATERIALS AND FIBERS INCLUDING STARCH-BASED POLYMERIC MATERIALS

    公开(公告)号:US20210269944A1

    公开(公告)日:2021-09-02

    申请号:US17327577

    申请日:2021-05-21

    Applicant: BiologiQ, Inc.

    Abstract: Described are very high molecular weight (e.g., over 2 million, such as 3-20 million g/mol) starch-based materials, and formulations including such, which can be spun in spunbond, melt blown, yarn, or similar processes. Even with such very high molecular weights, the formulations can be processed at commercial line speeds, with spinneret shear viscosities of 1000 sec−1, without onset of melt flow instability. The starch-based material can be blended with one or more thermoplastic materials having higher melt flow index value(s), which serve as a diluent and plasticizer, allowing the very viscous starch-based component to be spun under such conditions. The particular melt flow index characteristics of the thermoplastic diluent material can be selected based on what type of process is being used (e.g., spunbond, melt blown, yarn, etc.). The starch-based material may exhibit high shear sensitivity, strain hardening behavior, and/or very high critical shear stress (e.g., at least 125 kPa).

    Methods for lending biodegradability to non-biodegradable plastic materials

    公开(公告)号:US11046840B2

    公开(公告)日:2021-06-29

    申请号:US15691588

    申请日:2017-08-30

    Applicant: BiologiQ, Inc.

    Abstract: Described herein are methods for rendering biodegradable a plastic material that is not itself biodegradable, by blending the plastic material with a carbohydrate-based polymeric material that is formed from one or more starches, and a plasticizer (e.g., glycerin). The carbohydrate-based polymeric material is less crystalline than the starting starch materials, e.g., being substantially amorphous, and having a crystallinity of no more than 20%. Third party testing shows blends of such materials render the entire blend biodegradable, believed to be due to the low crystalline substantially amorphous carbohydrate-based polymeric material breaking the hygroscopic barrier associated with the non-biodegradable plastic material, so that when blended together, both the plastic material and the carbohydrate-based polymeric material are biodegradable.

    Polymeric articles comprising blends of PBAT, PLA and a carbohydrate-based polymeric material

    公开(公告)号:US11359088B2

    公开(公告)日:2022-06-14

    申请号:US16925952

    申请日:2020-07-10

    Applicant: BiologiQ, Inc.

    Abstract: Composite blends of PBAT (or another similar polyester) with PLA and a carbohydrate-based polymeric material. While PLA is not compostable under home composting conditions (e.g., temperature of 28° C.) on its own, when blended in the manner described herein, it is compositable under such conditions. The addition of the PLA increases the rigidity of the composite blend, as PBAT on its own is so flexible as to be problematic for use in carryout bags, and the like. An exemplary blend may include 30-55% by weight of the carbohydrate-based polymeric material, up to 20%, or up to 15% by weight of PLA, with the balance of polymeric content being PBAT (e.g., 30-60% PBAT). Other components (e.g., an inorganic filler, such as calcium carbonate) may also be included in the blend.

    Marine biodegradable plastics comprising a blend of polyester and a carbohydrate-based polymeric material

    公开(公告)号:US11149144B2

    公开(公告)日:2021-10-19

    申请号:US16425397

    申请日:2019-05-29

    Applicant: BiologiQ, Inc.

    Abstract: Composite blends of polyester containing plastic materials, and a starch-based polymeric material that increases the biodegradability of the polyesters of such a composite in simulated or actual marine conditions (e.g., simulated by ASTM D-6691). Enhanced rate or extent of biodegradation may also be exhibited in simulated or actual land-based disposal conditions. The starch-based polymeric materials are substantially amorphous, and are homogenously blended with the polyester plastic materials. While polyester plastics such as PBAT, PLA, PCL, and/or PBS may exhibit some biodegradability characteristics when composted and/or disposed of in landfill conditions at elevated temperatures, they exhibit limited if any biodegradability when disposed of in a marine environment. Even conventional blends of starch with such polyesters do not exhibit any significant marine biodegradability with respect to the polyester components therein. Third party testing shows the present blends exhibit substantially complete biodegradability of the entire composite under marine conditions, after about 400 days.

    YARN MATERIALS AND FIBERS INCLUDING STARCH-BASED POLYMERIC MATERIALS

    公开(公告)号:US20210277207A1

    公开(公告)日:2021-09-09

    申请号:US17327590

    申请日:2021-05-21

    Applicant: BiologiQ, Inc.

    Abstract: Described are very high molecular weight (e.g., over 2 million, such as 3-20 million g/mol) starch-based materials, and formulations including such, which can be spun in spunbond, melt blown, yarn, or similar processes. Even with such very high molecular weights, the formulations can be processed at commercial line speeds, with spinneret shear viscosities of 1000 sec−1, without onset of melt flow instability. The starch-based material can be blended with one or more thermoplastic materials having higher melt flow index value(s), which serve as a diluent and plasticizer, allowing the very viscous starch-based component to be spun under such conditions. The particular melt flow index characteristics of the thermoplastic diluent material can be selected based on what type of process is being used (e.g., spunbond, melt blown, yarn, etc.). The starch-based material may exhibit high shear sensitivity, strain hardening behavior, and/or very high critical shear stress (e.g., at least 125 kPa).

Patent Agency Ranking