Abstract:
A touch screen system includes a touch screen corresponding to a Descartes coordinate system XOY, a first image capturing unit, a second capturing unit, and a processing unit. The first image capturing unit and the second capturing unit are arranged at the periphery of the touch screen and are substantially perpendicular to each other. Both the two image capturing units include a camera and a housing, the camera is housed in the housing to take images, an optical axis of the lens of each camera is perpendicular to X or Y axis of the system XOY respectively for acquiring images including one touch point. The processing unit identifies a touched point on the touch screen and determines X and Y coordinates of the touched point in the system XOY and executing a function corresponding to the X and Y coordinates of the touched point.
Abstract:
The present disclosure relates to a signal receiver and a detection system. The signal receiver includes a housing and a handle. The housing includes a body and a protrusion. The body includes a first face and a second face disposed opposite each other. The protrusion is connected to the body and protrudes relative to the first face along a direction away from the second face. The handle is arranged on the first face.
Abstract:
The present disclosure may relate to a detector and a detecting system. The detector may include a probe, a first connector connected to the probe, a second connector configured to connect to an external apparatus, an elastic member arranged between and connected to the first connector and the second connector, a transmission line and a flexible protector. An end of the transmission line may pass through the first connector and connect with the probe. The other end of the transmission line may connect with the second connector. An end of the flexible protector may be connected to the first connector. The other end of the flexible protector may be connected to the second connector. The length of the flexible protector may be greater than that of the elastic member in its natural state, and less than that of the transmission line between the first connector and the second connector.
Abstract:
In one embodiment, a method of operating a radio access node is provided. The method comprises determining whether support from a secondary cell is required for a wireless device to communicate with the radio access node, and, in response to determining that support from the secondary cell is required, calculating a modified channel condition outer-loop value for the secondary cell; and using the modified channel condition outer-loop value in an initial activation decision step for the secondary cell. The initial activation decision step may comprise activating the secondary cell in response to determining that the sum of a device reported channel condition value and the modified channel condition outer-loop value is above an activation threshold. Corresponding devices, computer programs and radio access nodes adapted to carry out the methods provided are also disclosed.
Abstract:
A fuel supply system is provided having a first fuel gas compressor configured to be driven by a motor and a second fuel gas compressor configured to be driven by a shaft of a gas turbine system. The first fuel gas compressor and the second fuel gas compressor are configured to supply a pressurized fuel flow to a combustor of the gas turbine system, and the first fuel gas compressor and the second fuel gas compressor are coupled to one another in series.
Abstract:
In a method of adjusting a modulation and coding scheme (MCS) level for a transmission on a communication channel between a base station and a mobile terminal, at the base station: a target value for an error metric is defined; the error metric is measured; an MCS offset based on a degree of deviation of the measurement of the error metric from the target value is determined; an indication of a channel quality measurement for the communication channel is received from the mobile terminal; a pre-adjusted MCS level corresponding to the indication of the channel quality measurement is determined using a fixed mapping between a set of channel quality levels and a corresponding set of MCS levels; an adjusted MCS level is determined by adding the MCS offset to the pre-adjusted MCS level; and the adjusted MCS level is assigned to the transmission.
Abstract:
In a method of adjusting a modulation and coding scheme (MCS) level for a transmission on a communication channel between a base station and a mobile terminal, at the base station: a target value for an error metric is defined; the error metric is measured; an MCS offset based on a degree of deviation of the measurement of the error metric from the target value is determined; an indication of a channel quality measurement for the communication channel is received from the mobile terminal; a pre-adjusted MCS level corresponding to the indication of the channel quality measurement is determined using a fixed mapping between a set of channel quality levels and a corresponding set of MCS levels; an adjusted MCS level is determined by adding the MCS offset to the pre-adjusted MCS level; and the adjusted MCS level is assigned to the transmission.
Abstract:
Lossless video data compression is performed in real time at the data rate of incoming real time video data in a process employing a minimum number of computational steps for each video pixel. A first step is to convert each pixel 8-bit byte to a difference byte representing the difference between the pixel and its immediate predecessor in a serialized stream of the pixel bytes. Thus, each 8-bit pixel byte is subtracted from its predecessor. This step reduces the dynamic range of the data. A next step is to discard any carry bits generated in the subtraction process of two's complement arithmetic. This reduces the data by a factor of two. Finally, the 8-bit difference pixel bytes thus produced are subject to a maximum entropy encoding process. Such a maximum entropy encoding process may be referred to as a minimum length encoding process. One example is Huffman encoding. In such an encoding process, a code table for the entire video frame is constructed, in which a set of minimum length symbols are correlated to the set of difference pixel bytes comprising the video frame, the more frequently occurring bytes being assigned to the shorter minimum length symbols. This code table is then employed to convert the all of the difference pixel bytes of the entire video frame to minimum length symbols.
Abstract:
A ventilation and temperature regulation structure for an animal house, comprising a house body and a temperature regulation device with a culture layer, the house body comprising a temperature equalization device and an exhaust gas extraction device, the temperature equalization device includes a temperature equalization passage passing through the culture layer, several ventilation holes are disposed on the side wall of the temperature equalization passage; and an outlet end of the temperature regulation device is connected with the temperature equalization passage. Such technical solution is to provide a temperature regulation structure for an animal house having good ventilation, waste reduction and good effect of temperature regulation.
Abstract:
Methods and apparatus for secure networking protocol optimization via NIC hardware offloading. Under a method, security offload entries are cached in a flow table or a security database offload table on a network interface coupled to a host that implements a host security database mapping flows to Security Association (SA) contexts. Each security offload entry includes information identify a flow and information, such as an offset value, to locate a corresponding entry for the flow in the host security database. Hardware descriptors for received packets that belong to flows with matching security offload entries are generated and marked with the information used to locate the corresponding entries in the host security database. The hardware descriptors are processed by software on the host and the location information is used to de-reference the location of applicable entries in the host security database. In effect, the lookup of matching flows in the host security database is offloaded to the network hardware device.