摘要:
Disclosed is a humanoid robot apparatus, method and computer-readable medium thereof related to lifting and holding a heavy object having a weight unknown to the robot, by measuring an external force acting on the robot. Linear momentum and rotational momentum are compensated for stepwise according to the degree of stability of the robot which is determined based on the measured external force. Accordingly, the robot stably lifts and holds the object without losing its balance.
摘要:
Disclosed is a humanoid robot apparatus, method and computer-readable medium thereof related to lifting and holding a heavy object having a weight unknown to the robot, by measuring an external force acting on the robot. Linear momentum and rotational momentum are compensated for stepwise according to the degree of stability of the robot which is determined based on the measured external force. Accordingly, the robot stably lifts and holds the object without losing its balance.
摘要:
Disclosed are an apparatus, a method and a computer-readable medium controlling whole-body operation of a humanoid robot. The humanoid robot recognizes a motion control code using binary data mapped according to a motion command represented by a language understood by a human to implement a whole-body operation. Since a control mode corresponding to a task space control and a control mode corresponding to a joint space control are used together to describe whole-body motion, the whole-body operation more similar to a human action may be easily implemented.
摘要:
If a manipulator of a robot falls in local minima when expanding a node to generate a path, the manipulator may efficiently escape from local minima by any one of a random escaping method and a goal function changing method or a combination thereof to generate the path. When the solution of inverse kinematics is not obtained due to local minima or when the solution of inverse kinematics is not obtained due to an inaccurate goal function, an optimal motion path to avoid an obstacle may be efficiently searched for. The speed to obtain the solution may be increased and thus the time consumed to search for the optimal motion path may be shortened.
摘要:
A robot and a control method thereof. The control method includes generating and storing plural grasping motions corresponding to data of a target object, selecting a grasping motion corresponding to a grasping purpose of the target object among the plural grasping motions, generating a path of arms corresponding to the selected grasping motion, calculating torques to track the path of the arms, and outputting the torques toward the arms so as to perform movement of the arms and grasping of the target object. The grasping motion path corresponding to the grasping purpose is generated and the path of arms is generated, thereby reducing overall calculation time during grasping of the target object to increase calculating efficiency, minimizing generation of the path of the arms, and allowing an arm path calculating process to be performed at the late stage of a grasping control process to improve grasping performance.
摘要:
A path planning apparatus of a robot smoothes a motion path while satisfying a constraint. In a configuration space where a manipulator of a robot performs a task, a Rapidly-exploring Random Tree (RRT) path which extends from a start point and reaches a goal point may be smoothed while satisfying a constraint to generate a stable motion path. Accordingly, path planning performance is improved and an optimal path satisfying a kinematic constraint may be rapidly obtained.
摘要:
A path planning apparatus and method of a robot, in which a path, along which the robot accesses an object to grasp the object, is planned. The path planning method includes judging whether or not a robot hand of a robot collides with an obstacle when the robot hand moves along one access path candidate selected from plural access path candidates along which the robot hand accesses an object to grasp the object, calculating an access score of the selected access path candidate when the robot hand does not collide with the obstacle, and determining an access path plan using the access score of the selected access path candidate.
摘要:
A suitable waypoint is selected using a goal score, a section from a start point to a goal point through the waypoint is divided into a plurality of sections based on the waypoint with a solution of inverse kinematics, and trees are simultaneously expanded in the sections using a Best First Search & Rapidly Random Tree (BF-RRT) algorithm so as to generate a path. By this configuration, a probability of local minima occurring is decreased compared with the case where the waypoint is randomly selected. In addition, since the trees are simultaneously expanded in the sections each having the waypoint with a solution of inverse kinematics, the solution may be rapidly obtained. A time consumed to search for an optimal motion path may be shortened and path plan performance may be improved.
摘要:
Disclosed herein are a humanoid robot and a control method thereof. The humanoid robot controls robot parts performing main motions having high relevance with respect to a commanded action to the humanoid robot such that these robot parts move along optimized motion trajectories generated through motion optimization in consideration of robot dynamics, and controls robot parts performing remaining motions having low relevance with respect to the commanded action such that these robot parts move along predetermined motion trajectories corresponding to the commanded action, thereby simplifying optimization of whole body motions of the humanoid robot while performing the commanded action maximally similarly to a real human action.
摘要:
A path planning apparatus of a robot smoothes a motion path while satisfying a constraint. In a configuration space where a manipulator of a robot performs a task, a Rapidly-exploring Random Tree (RRT) path which extends from a start point and reaches a goal point may be smoothed while satisfying a constraint to generate a stable motion path. Accordingly, path planning performance is improved and an optimal path satisfying a kinematic constraint may be rapidly obtained.