摘要:
A memory cell has a trench formed into a surface of a semiconductor substrate, and spaced apart source and drain regions with a channel region formed therebetween. The source region is formed underneath the trench, and the channel region includes a first portion extending vertically along a sidewall of the trench and a second portion extending horizontally along the substrate surface. An electrically conductive floating gate is disposed in the trench adjacent to and insulated from the channel region first portion. An electrically conductive control gate is disposed over and insulated from the channel region second portion. An erase gate is disposed in the trench adjacent to and insulated from the floating gate. A block of conductive material has at least a lower portion thereof disposed in the trench adjacent to and insulated from the erase gate, and electrically connected to the source region.
摘要:
A memory cell has a trench formed into a surface of a semiconductor substrate, and spaced apart source and drain regions with a channel region formed therebetween. The source region is formed underneath the trench, and the channel region includes a first portion extending vertically along a sidewall of the trench and a second portion extending horizontally along the substrate surface. An electrically conductive floating gate is disposed in the trench adjacent to and insulated from the channel region first portion. An electrically conductive control gate is disposed over and insulated from the channel region second portion. An erase gate is disposed in the trench adjacent to and insulated from the floating gate. A block of conductive material has at least a lower portion thereof disposed in the trench adjacent to and insulated from the erase gate, and electrically connected to the source region.
摘要:
A memory cell has a trench formed into a surface of a semiconductor substrate, and spaced apart source and drain regions with a channel region formed therebetween. The source region is formed underneath the trench, and the channel region includes a first portion extending vertically along a sidewall of the trench and a second portion extending horizontally along the substrate surface. An electrically conductive floating gate is disposed in the trench adjacent to and insulated from the channel region first portion. An electrically conductive control gate is disposed over and insulated from the channel region second portion. An erase gate is disposed in the trench adjacent to and insulated from the floating gate. A block of conductive material has at least a lower portion thereof disposed in the trench adjacent to and insulated from the erase gate, and electrically connected to the source region.
摘要:
A buried bit line read/program non-volatile memory cell and array is capable of achieving high density. The cell and array is made in a semiconductor substrate which has a plurality of spaced apart trenches, with a planar surface between the trenches. Each trench has a side wall and a bottom wall. Each memory cell has a floating gate for storage of charges thereon. The cell has spaced apart source/drain regions with a channel therebetween, with the channel having two portions. One of the source/drain regions is in the bottom wall of the trench. The floating gate is in the trench and is is over a first portion of the channel and is spaced apart from the side wall of the trench. A gate electrode controls the conduction of the channel in the second portion, which is in the planar surface of the substrate. The other source/drain region is in the substrate in the planar surface of the substrate. An independently controllable control gate is also in the trench, insulated from the floating gate and is capacitively coupled thereto. The cell programs by hot channel electron injection, and erases by Fowler-Nordheim tunneling of electrons from the floating gate to the gate electrode or from the floating gate to the source/drain region at the bottom wall of the trench. The source, drain and control gates are all substantially parallel to one another, with the gate electrode substantially perpendicular to the source/drain/control gates. The source/drain lines are buried in the substrate, creating a virtual ground array.
摘要:
A bi-directional read/program non-volatile memory cell and array is capable of achieving high density. Each memory cell has two spaced floating gates for storage of charges thereon. The cell has spaced apart source/drain regions with a channel therebetween, with the channel having three portions. One of the floating gate is over a first portion; another floating gate is over a second portion, and a gate electrode controls the conduction of the channel in the third portion between the first and second portions. An independently controllable control gate is insulated from each of the source/drain regions, and is also capacitively coupled to the floating gate. The cell programs by hot channel electron injection, and erases by Fowler-Nordheim tunneling of electrons from the floating gate to the gate electrode. Bi-directional read permits the cell to be programmed to store bits, with one bit in each floating gate. The independently controllable control gates permit an array of such memory cells to operate in a NAND configuration.
摘要:
A bi-directional read/program non-volatile memory cell and array is capable of achieving high density. Each memory cell has two spaced floating gates for storage of charges thereon. The cell has spaced apart source/drain regions with a channel therebetween, with the channel having three portions. One of the floating gate is over a first portion; another floating gate is over a second portion, and a gate electrode controls the conduction of the channel in the third portion between the first and second portions. An independently controllable control gate is insulated from each of the source/drain regions, and is also capacitively coupled to the floating gate. The cell programs by hot channel electron injection, and erases by Fowler-Nordheim tunneling of electrons from the floating gate to the gate electrode. Bi-directional read permits the cell to be programmed to store bits, with one bit in each floating gate. The independently controllable control gates permit an array of such memory cells to operate in a NAND configuration.
摘要:
A bi-directional read/program non-volatile memory cell and array is capable of achieving high density. Each memory cell has two spaced floating gates for storage of charges thereon. The cell has spaced apart source/drain regions with a channel therebetween, with the channel having three portions. One of the floating gate is over a first portion; another floating gate is over a second portion, and a gate electrode controls the conduction of the channel in the third portion between the first and second portions. An independently controllable control gate is insulated from each of the source/drain regions, and is also capacitively coupled to the floating gate. The cell programs by hot channel electron injection, and erases by Fowler-Nordheim tunneling of electrons from the floating gate to the gate electrode. Bi-directional read permits the cell to be programmed to store bits, with one bit in each floating gate. The independently controllable control gates permit an array of such memory cells to operate in a NAND configuration.
摘要:
A memory cell has a trench formed into a surface of a semiconductor substrate, and spaced apart source and drain regions with a channel region formed therebetween. The source region is formed underneath the trench, and the channel region includes a first portion extending vertically along a sidewall of the trench and a second portion extending horizontally along the substrate surface. An electrically conductive floating gate is disposed in the trench adjacent to and insulated from the channel region first portion. An electrically conductive control gate is disposed over and insulated from the channel region second portion. An erase gate is disposed in the trench adjacent to and insulated from the floating gate. A block of conductive material has at least a lower portion thereof disposed in the trench adjacent to and insulated from the erase gate, and electrically connected to the source region.
摘要:
A method of making an array of bi-directional non-volatile memory cells in a substrate of a substantially single crystalline semiconductive material, where the material has a first conductivity type with the substrate having a substantially planar surface, comprises forming a plurality of spaced apart substantially parallel trenches in a first direction in the planar surface. Each of the trenches has a sidewall and a bottom. A region of a second conductivity type is formed in the bottom of each trench. A floating gate is formed in each trench insulated and spaced apart from the sidewall of the trench. The floating gate has a first end near the bottom and a second end furthest away from the bottom. A layer of tunneling oxide is formed about the second end of each floating gate. A layer of word region is formed on the layer of tunneling oxide. The layer of word region extends in a second direction substantially perpendicular to the first direction. The layer of word region is cut into a plurality of strips in the second direction to form a plurality of spaced apart word lines. Each strip is spaced apart from one another and substantially parallel to one another, and cuts through the floating gate in each of the trenches. Electrical connections are made to each of the region of second conductivity type and each of the plurality of spaced apart word lines.
摘要:
A method of making an array of bi-directional non-volatile memory cells in a substrate of a substantially single crystalline semiconductive material, where the material has a first conductivity type with the substrate having a substantially planar surface, comprises forming a plurality of spaced apart substantially parallel trenches in a first direction in the planar surface. Each of the trenches has a sidewall and a bottom. A region of a second conductivity type is formed in the bottom of each trench. A floating gate is formed in each trench insulated and spaced apart from the sidewall of the trench. The floating gate has a first end near the bottom and a second end furthest away from the bottom. A layer of tunneling oxide is formed about the second end of each floating gate. A layer of word region is formed on the layer of tunneling oxide. The layer of word region extends in a second direction substantially perpendicular to the first direction. The layer of word region is cut into a plurality of strips in the second direction to form a plurality of spaced apart word lines. Each strip is spaced apart from one another and substantially parallel to one another, and cuts through the floating gate in each of the trenches. Electrical connections are made to each of the region of second conductivity type and each of the plurality of spaced apart word lines.