Abstract:
The present disclosure relates generally to devices, systems, and methods for coil embolization, and, more particularly, to use and methods of forming coated coils. In an aspect, an embolic system may include a coil having a proximal end, a distal end, and a length therebetween slidingly disposed within a sheath. A coating may be disposed about the coil. A delivery filament may be configured to be slidingly disposed within the sheath proximal of the coil such that the coil can be ejected from the distal end of the sheath into the working lumen of a microcatheter. The coating may be configured to substantially fracture as the coil transitions from being substantially aligned with a longitudinal axis of the microcatheter to substantially misaligned with the longitudinal axis of the microcatheter upon being ejected from the microcatheter. The coating may be configured to plasticize after being ejected into an aqueous environment.
Abstract:
Medical devices that include micromachined hypotubes or that have themselves been micromachined can provide advantages in flexibility, strength and other desirable properties. Examples of such medical devices may include catheters such as guide catheters and balloon catheters. Such devices may also include dual shaft medical devices in which an outer shaft is reversibly lockable onto an inner shaft.
Abstract:
The present disclosure relates generally to devices, systems, and methods for coil embolization, and, more particularly, to use and methods of forming coated coils. In an aspect, an embolic system may include a coil having a proximal end, a distal end, and a length therebetween slidingly disposed within a sheath. A coating may be disposed about the coil. A delivery filament may be configured to be slidingly disposed within the sheath proximal of the coil such that the coil can be ejected from the distal end of the sheath into the working lumen of a microcatheter. The coating may be configured to substantially fracture as the coil transitions from being substantially aligned with a longitudinal axis of the microcatheter to substantially misaligned with the longitudinal axis of the microcatheter upon being ejected from the microcatheter. The coating may be configured to plasticize after being ejected into an aqueous environment.
Abstract:
A vascular occlusion device for deployment within a lumen of a vessel may include a self-expanding frame configured to shift between a collapsed configuration and an expanded configuration, the self-expanding frame defining a perimeter of an interior space disposed within the self-expanding frame, and an occlusive membrane secured to the self-expanding frame. The occlusive membrane may include a suspended portion disposed within the self-expanding frame and spaced apart from the perimeter of the interior space.
Abstract:
Methods and devices incorporating a guidewire entry port subassembly for use in rapid exchange catheters. The use of a subassembly allows for stronger quality control and simpler fabrication of a rapid exchange device. In several embodiments, methods of making a molded guidewire entry port using a mold, often in conjunction with one or more mandrels, are disclosed. Several device embodiments include a separate molded guidewire port as well as molded guidewire ports which are attached, during a molding step, to segments of a catheter.
Abstract:
A vascular occlusion device for deployment within a lumen of a vessel may include a self-expanding frame configured to shift between a collapsed configuration and an expanded configuration, the self-expanding frame defining a perimeter of an interior space disposed within the self-expanding frame, and an occlusive membrane secured to the self-expanding frame. The occlusive membrane may include a suspended portion disposed within the self-expanding frame and spaced apart from the perimeter of the interior space.
Abstract:
A crosslinked embolic hydrogel is disclosed, the crosslinked embolic hydrogel comprising a hydrophilic polymer functionalized with first reactive groups and a crosslinking agent functionalized with second reactive groups; wherein the first and second reacting groups comprise a biorthogonally reactive pair that react to form the crosslinked embolic hydrogel. Methods and systems are also disclosed.
Abstract:
Methods and devices incorporating a guidewire entry port subassembly for use in rapid exchange catheters. The use of a subassembly allows for stronger quality control and simpler fabrication of a rapid exchange device. In several embodiments, methods of making a molded guidewire entry port using a mold, often in conjunction with one or more mandrels, are disclosed. Several device embodiments include a separate molded guidewire port as well as molded guidewire ports which are attached, during a molding step, to segments of a catheter.