PROMOTION SCHEDULING MANAGEMENT
    2.
    发明申请
    PROMOTION SCHEDULING MANAGEMENT 审中-公开
    促销调度管理

    公开(公告)号:US20150006292A1

    公开(公告)日:2015-01-01

    申请号:US13934803

    申请日:2013-07-03

    IPC分类号: G06Q30/02

    CPC分类号: G06Q30/0264

    摘要: In accordance with aspects of the disclosure, systems and methods are provided for managing promotion scheduling by generating a promotion sales plan for scheduling promotion events within one or more time intervals based on potential promotion sales strategies for use with one or more products within the one or more time intervals while considering constraints related to the historic sales data for each product.

    摘要翻译: 根据本公开的方面,提供了系统和方法,用于通过基于与一个或多个时间间隔内的一个或多个产品一起使用的潜在促销销售策略生成用于在一个或多个时间间隔内安排促销事件的促销销售计划来管理促销调度 考虑与每个产品的历史销售数据相关的限制的更多时间间隔。

    CONFIGURABLE MULTI-OBJECTIVE RECOMMENDATIONS
    3.
    发明申请
    CONFIGURABLE MULTI-OBJECTIVE RECOMMENDATIONS 审中-公开
    可配置的多目标建议

    公开(公告)号:US20140164170A1

    公开(公告)日:2014-06-12

    申请号:US13720031

    申请日:2012-12-19

    IPC分类号: G06Q30/06

    CPC分类号: G06Q30/0631

    摘要: The method includes determining at least one business objective on which to base a recommendation list for a first item, associating a configurable target with the business objective, the configurable target being based on a goal for a second item, determining at least one business constraint relating the first item with the second item, the at least one business constraint being based on the business objective and the associated configurable target and generating the recommendation list for the first item based on a list of candidate items and the business constraint.

    摘要翻译: 该方法包括确定至少一个业务目标,基于哪个基于第一项目的推荐列表,将可配置目标与业务目标相关联,可配置目标基于第二项目的目标,确定至少一个业务约束相关 所述第一项目具有所述第二项目,所述至少一个业务约束基于所述业务目标和相关联的可配置目标,并且基于候选项目列表和所述业务约束生成所述第一项目的所述推荐列表。

    Feedback-driven exogenous factor learning in time series forecasting

    公开(公告)号:US09665830B2

    公开(公告)日:2017-05-30

    申请号:US14341525

    申请日:2014-07-25

    IPC分类号: G06F17/00 G06F17/20 G06N99/00

    CPC分类号: G06N99/005

    摘要: A system for forecast modeling includes at least one processor and at least one database that is operably coupled to the at least one processor. The database includes a time series data module that is configured to store time series data for a domain, an exogenous data module that is configured to store exogenous data associated with multiple exogenous factors and a feedback module that is configured to collect and store feedback data from multiple online users, where the feedback data is related to the exogenous data and the exogenous factors. The system includes a data pre-processor module that is configured to use the at least one processor to identify and select a portion of the exogenous factors using the feedback data collected from the online users for use in a forecast model in combination with the time series data for the domain.

    FEEDBACK-DRIVEN EXOGENOUS FACTOR LEARNING IN TIME SERIES FORECASTING
    6.
    发明申请
    FEEDBACK-DRIVEN EXOGENOUS FACTOR LEARNING IN TIME SERIES FORECASTING 有权
    反馈驱动的异常因子在时间序列预测中学习

    公开(公告)号:US20160026930A1

    公开(公告)日:2016-01-28

    申请号:US14341525

    申请日:2014-07-25

    IPC分类号: G06N99/00 G06N5/04

    CPC分类号: G06N99/005

    摘要: A system for forecast modeling includes at least one processor and at least one database that is operably coupled to the at least one processor. The database includes a time series data module that is configured to store time series data for a domain, an exogenous data module that is configured to store exogenous data associated with multiple exogenous factors and a feedback module that is configured to collect and store feedback data from multiple online users, where the feedback data is related to the exogenous data and the exogenous factors. The system includes a data pre-processor module that is configured to use the at least one processor to identify and select a portion of the exogenous factors using the feedback data collected from the online users for use in a forecast model in combination with the time series data for the domain.

    摘要翻译: 一种用于预测建模的系统包括至少一个处理器和至少一个可操作地耦合到所述至少一个处理器的数据库。 数据库包括被配置为存储域的时间序列数据的时间序列数据模块,被配置为存储与多个外部因素相关联的外部数据的外部数据模块,以及被配置为收集和存储来自 多个在线用户,反馈数据与外生数据和外生因素有关。 该系统包括数据预处理器模块,其被配置为使用至少一个处理器来使用从在线用户收集的反馈数据来识别和选择一部分外部因素,以用于与预测模型结合时间序列 域的数据。

    Model vector generation for machine learning algorithms

    公开(公告)号:US10068186B2

    公开(公告)日:2018-09-04

    申请号:US14663701

    申请日:2015-03-20

    IPC分类号: G06N99/00 G06N3/12

    摘要: Techniques are described for forming a machine learning model vector, or just model vector, that represents a weighted combination of machine learning models, each associated with a corresponding feature set and parameterized by corresponding model parameters. A model vector generator generates such a model vector for executing automated machine learning with respect to historical data, including generating the model vector through an iterative selection of values for a feature vector, a weighted model vector, and a parameter vector that comprise the model vector. Accordingly, the various benefits of known and future machine learning algorithms are provided in a fast, effective, and efficient manner, which is highly adaptable to many different types of use cases.

    Context aware recommendation
    8.
    发明授权
    Context aware recommendation 有权
    情境意识推荐

    公开(公告)号:US09396270B2

    公开(公告)日:2016-07-19

    申请号:US13934799

    申请日:2013-07-03

    IPC分类号: G06F7/00 G06F17/30

    CPC分类号: G06F17/30867

    摘要: In accordance with aspects of the disclosure, systems and methods are provided for managing context aware recommendations by providing recommendations to a user in response to a query related to the user by integrating contextual information of a context related to the user in a recommendation model while considering a granular structure of the context and the contextual information thereof.

    摘要翻译: 根据本公开的方面,提供了系统和方法,用于通过在推荐模型中集成与用户相关的上下文的上下文信息的同时考虑到与用户相关的查询来向用户提供建议来管理上下文感知建议,同时考虑 上下文的粒度结构及其上下文信息。

    CONTEXT AWARE RECOMMENDATION
    9.
    发明申请
    CONTEXT AWARE RECOMMENDATION 有权
    背景知识推荐

    公开(公告)号:US20150006553A1

    公开(公告)日:2015-01-01

    申请号:US13934799

    申请日:2013-07-03

    IPC分类号: G06F17/30

    CPC分类号: G06F17/30867

    摘要: In accordance with aspects of the disclosure, systems and methods are provided for managing context aware recommendations by providing recommendations to a user in response to a query related to the user by integrating contextual information of a context related to the user in a recommendation model while considering a granular structure of the context and the contextual information thereof.

    摘要翻译: 根据本公开的方面,提供了系统和方法,用于通过在推荐模型中集成与用户相关的上下文的上下文信息的同时考虑到与用户相关的查询来向用户提供建议来管理上下文感知建议,同时考虑 上下文的粒度结构及其上下文信息。