Abstract:
A method for conducting a collaborative web-based whiteboard session, including receiving one or more whiteboard annotations in first units in a first client application component, converting the one or more whiteboard annotations from the first units into second units by utilizing a software component associated with the first client application component, sending the one or more whiteboard annotations, in the second units, to a second client application component, converting the one or more whiteboard annotations received from the first client application component from the second units into coordinates specific to the second client application component, and presenting the one or more whiteboard annotations using the coordinates specific to the second client application component to a user through the second client application component.
Abstract:
A voice radio communication system prioritizes radio voice communications so that higher priority voice transmission is given precedence. The communication system comprises a transmitter that inserts a digital watermark into a voice communication. Software in a receiver decodes the digital watermark to determine a priority requested by the sender, and other information about the sender and the message. The software determines the message priority based on multiple factors. Voice transmissions are digitally recorded and played in order of priority. Options exist for the user to control the playback.
Abstract:
A voice radio communication system prioritizes radio voice communications so that higher priority voice transmission is given precedence. The communication system comprises a transmitter that inserts a digital watermark into a voice communication. Software in a receiver decodes the digital watermark to determine a priority requested by the sender, and other information about the sender and the message. The software determines the message priority based on multiple factors. Voice transmissions are digitally recorded and played in order of priority. Options exist for the user to control the playback.
Abstract:
A method for conducting a collaborative web-based whiteboard session, including receiving one or more whiteboard annotations in first units in a first client application component, converting the one or more whiteboard annotations from the first units into second units by utilizing a software component associated with the first client application component, sending the one or more whiteboard annotations, in the second units, to a second client application component, converting the one or more whiteboard annotations received from the first client application component from the second units into coordinates specific to the second client application component, and presenting the one or more whiteboard annotations using the coordinates specific to the second client application component to a user through the second client application component.
Abstract:
This disclosure is directed to methods, computer-readable media, and systems for controlling one or more uninhabited heterogeneous autonomous transport devices. Embodiments of the present invention advantageously reduce costs and improve efficiencies by providing capabilities for a computing device to be able to control and to monitor one or more heterogeneous autonomous transport devices. This occurs by generating a command signal from a computing device and transmitting the command signal to control on-board computing devices of one or more heterogeneous transport devices to execute requirements of a mission. Also, embodiments of the present invention provide ways to start-up, to send commands, and to shut down real or simulated heterogeneous autonomous transport devices.
Abstract:
A method and apparatus for applying a coating design to selected portions of a surface (13) of a structure (14) including the steps of applying a maskant (18) to the surface (13), positioning a plurality of sensors (20) on the structure (14) around the surface (13), positioning a laser (22) at a distance from the surface (13), directing a laser beam (32) from the laser (22) to each of the sensors (20) as input to the sensors, and using output from the sensors (20) based on the input to determine the position of the laser (22) relative to the surface (13), scanning the perimeter of the selected portions (36) with a laser beam (34), including using the determined relative positions of the laser and the surface to guide the laser beam, to cut into the maskant (18) around the perimeter, peeling the maskant (18) away from the selected portions (36), and applying the coating to the selected portions.