摘要:
Circuits systems and methods for frequency translation and signal distribution includes a downconverter circuit having first and second inputs coupled to receive respective first and second input signals, and an output for providing a downconverted output signal. The downconverter circuit includes a mixer circuit, a first switch, and a second switch. The mixer includes a first input coupled to a reference source, a second input, and an output coupled to the downconverter circuit output. The first switch includes a first port coupled to the downconverter circuit first input, and a second port switchably coupled to the mixer circuit second input. The second switch includes a first port coupled to the downconverter circuit second input, and a second port switchably coupled to the mixer circuit second input.
摘要:
Circuits systems and methods for frequency translation and signal distribution includes a downconverter circuit having first and second inputs coupled to receive respective first and second input signals, and an output for providing a downconverted output signal. The downconverter circuit includes a mixer circuit, a first switch, and a second switch. The mixer includes a first input coupled to a reference source, a second input, and an output coupled to the downconverter circuit output. The first switch includes a first port coupled to the downconverter circuit first input, and a second port switchably coupled to the mixer circuit second input. The second switch includes a first port coupled to the downconverter circuit second input, and a second port switchably coupled to the mixer circuit second input.
摘要:
In many network applications, high reliability is a requirement. One way to achieve this high reliability is to offer a switching device that can switch a malfunctioning piece of equipment out of the network while also switching in a “new” operational piece of equipment into the network to take the place of the original malfunctioning piece of equipment. However, in order to achieve high reliability networks, the switching devices must also be highly reliable. This disclosure describes a new switching device and method that are more reliable when the time comes to swap malfunctioning equipment for operational equipment. The disclosed switching device and method are also protected from various surges experienced in the network.
摘要:
Agile frequency converter and method, IF-RF level exchange process, and notch filtering techniques. System noise and spurious levels generated by channel frequency conversion is reduced in applications requiring broadband combining of frequency converters to form multichannel composite signal. Converter employs two-stage frequency conversion process, with gain exchange system using variable pre-mixer gain and variable post-mixer attenuation to maintain constant RF output signal power level. For those few conversion frequencies where distortion component(s) cannot be filtered without degrading desired signal, IF-RF level exchange is optimized for meeting the carrier-to-distortion (C/D) ratio specifications at slight expense of noise level for that channel only, while still meeting aggregate combined carrier-to-noise (C/N) specification requirements. Optimal apportionment of level exchange for each channel depends on specific frequency rejection capability of spurious components and is matched to filtering capability and stored within non-volatile memory of a microcontroller used in the frequency converter.
摘要:
A method for improving or eliminating second harmonic and higher even order distortion terms and balance of fundamental signals in push-pull amplifiers and other differential circuits is disclosed. A common-mode (CM) signal is generated as a sum of two complementary (out of phase) signals in a summation network. The CM signal contains even order distortion terms only, while the fundamental signal and odd order distortion terms are canceled, thus providing a correction signal that can be used to reduce even order distortion terms, by injecting the correction signal with proper phase and amplitude, into suitable circuit nodes. For feedback, the correction signal is injected at the input of the amplifiers, for feed-forward, it's injected at the output. The correction signal can be amplified to higher levels and injected into the circuit, without affecting gain of fundamental signals; and can result in significant even order distortion improvements, and improved balance of complementary fundamental signals.
摘要:
A switchable filter and diplexer circuit includes a plurality of bandpass filters having passbands for the frequency bands in which communication across a communication channel is desired and a plurality of diplexers, the diplexers having a plurality of passbands. A plurality of switches are provided to select one of the bandpass filters or diplexers from among the plurality of bandpass filters and diplexers for communication on a communication channel. An additional switching capability is provided to select a first passband of a given diplexer when a second passband of that diplexer is selected by the plurality of switches.
摘要:
A regenerative frequency divider device including a plurality of multipliers, each of which has a first input port, a second input port and an output port; a first combiner coupled to the plurality of multipliers so as to receive an output signal from at least two of the multipliers; and a second combiner coupled to the plurality of multipliers so as to receive an output signal from at least two of multipliers. Further, a first output signal generated by the first combiner is coupled to the second input port of at least two of the multipliers; and a second output signal generated by the second combiner is coupled to the second input port of at least two of the multipliers such that a complex signal is fed back to the multipliers performing the down conversion process. The present invention divider CRD can achieve superior output noise floor of −180 dBc/Hz at multi-GHz frequencies.
摘要:
A frequency translation system includes first and second translational switches, and a signal bus coupled therebetween. The first translational switch includes one or more inputs configured to receive a respective one or more first input signals, a first plurality of outputs, and a second plurality of outputs. The second translational switch includes one or more inputs configured to receive a respective one or more second input signals, a first output, and a second output. The signal bus, coupled between the first and second translational switches, includes (i) a first bus line coupled to a first one of the first plurality of outputs of the first translational switch, and to the first output of the second translational switch, and (ii) a second bus line coupled to a first one of the second plurality of outputs of the first translational switch, and to the second output of the second translational switch.
摘要:
Techniques for accelerated processing associated with analog to digital signal conversion are disclosed. Accelerated processing is provided for sample-and-hold and track-and-hold circuits used with analog to digital converters in various embodiments. An abbreviated sampling state, an abbreviated reset state, or both are employed in various embodiments. By accelerating processing so as to avoid the need for waiting for a signal to settle within a predetermined tolerance, errors of different types may be incurred. Such errors are determined during calibration and stored for future retrieval and error compensation. Techniques for online and offline calibration are disclosed, whereby calibration may or may not impact normal signal conversion processing. Techniques disclosed herein find broad applicability in analog to digital conversion and yield faster processing in a variety of contexts.
摘要:
A translational switch system includes first and second translational switches, and a signal bus coupled therebetween. The first translational switch includes one or more inputs configured to receive a respective one or more first input signals, a first plurality of outputs, and a second plurality of outputs. The second translational switch includes one or more inputs configured to receive a respective one or more second input signals, a first output, and a second output. The signal bus, coupled between the first and second translational switches, includes (i) a first bus line coupled to a first one of the first plurality of outputs of the first translational switch, and to the first output of the second translational switch, and (ii) a second bus line coupled to a first one of the second plurality of outputs of the first translational switch, and to the second output of the second translational switch.