摘要:
A non-pneumatic wheel with reinforcement bands that provide structural support for the wheel and a method of manufacture of such a wheel are described. The reinforcement band forms part of an annular reinforcement structure that includes foam spacers positioned between the annular reinforcement band. The foam can be a reticulated foam into which a matrix material such as a polyurethane is introduced. The matrix material can also be used to form one or more features of the non-pneumatic wheel such as spokes, a mounting band, and a hub.
摘要:
A non-pneumatic wheel with reinforcement bands that provide structural support for the wheel and a method of manufacture of such a wheel are described. The reinforcement band forms part of an annular reinforcement structure that includes foam spacers positioned between the annular reinforcement band. The foam can be a reticulated foam into which a matrix material such as a polyurethane is introduced. The matrix material can also be used to form one or more features of the non-pneumatic wheel such as spokes, a mounting band, and a hub.
摘要:
An annular reinforcement structure is provided having an inner reinforcement band, an outer reinforcement band positioned around and concentric with the inner reinforcement band, and a cast-in-place polymer foam spacer, which maintains the spatial orientation of the inner and outer reinforcement bands. The annular reinforcement structure may be embedded in an elastomeric matrix material to provide stability, such as for belt for power transmission.
摘要:
A method is provided for making an annular reinforcement structure having inner and outer reinforcement bands maintained in concentric alignment by a resilient spacing element positioned between the bands. The method includes the steps of placing the spacing element against the inside face of the outer reinforcement band and compressing the spacing element with a jig, adjacent the top edge of the outer reinforcement band. The spacing element is sufficiently compressed to allow the inner reinforcement band to slide into concentric alignment with the outer reinforcement band, with a minimum of deflection and/or distortion of the inner reinforcement band.
摘要:
An annular reinforcement structure is provided having a first reinforcement band and a second reinforcement band in a spaced-apart, concentric relationship, and a cast-in-place core material positioned between the first and second reinforcement bands and bonded thereto.
摘要:
A non-pneumatic wheel is provided having a continuous loop reinforcement assembly that can support a load and have performance similar to pneumatic tires. Various configurations of a non-pneumatic wheel, including variations of the continuous loop reinforcement assembly, are provided. One or more resilient spacers can be positioned with the continuous loop reinforcement assembly and can be configured for the receipt of a matrix material.
摘要:
A non-pneumatic tire and a method of manufacturing the same are provided. More particularly, a non-pneumatic tire having a reinforcement structure with one or more spacers is provided along with a method of placement of a spacer between reinforcing bands of a non-pneumatic tire. A jig can be used to facilitate placement of the spacer.
摘要:
A non-pneumatic tire and a method of manufacturing the same are provided. More particularly, a non-pneumatic tire having a reinforcement structure with one or more spacers is provided along with a method of placement of a spacer between reinforcing bands of a non-pneumatic tire. A jig can be used to facilitate placement of the spacer.
摘要:
A non-pneumatic wheel is provided having a continuous loop reinforcement assembly that can support a load and have performance similar to pneumatic tires. Various configurations of a non-pneumatic wheel, including variations of the continuous loop reinforcement assembly, are provided. One or more resilient spacers can be positioned with the continuous loop reinforcement assembly and can be configured for the receipt of a matrix material.
摘要:
A method is provided for making an annular reinforcement structure having inner and outer reinforcement bands maintained in concentric alignment by a resilient spacing element positioned between the bands. The method includes the steps of placing the spacing element against the inside face of the outer reinforcement band and compressing the spacing element with a jig, adjacent the top edge of the outer reinforcement band. The spacing element is sufficiently compressed to allow the inner reinforcement band to slide into concentric alignment with the outer reinforcement band, with a minimum of deflection and/or distortion of the inner reinforcement band.