摘要:
The present invention relates to embodiments of: (1) a unitary holographic drive head assembly mounting structure; (2) an assembly comprising a unitary holographic drive head assembly mounting structure and a plurality of holographic drive head components and/or subassemblies; (3) a subassembly comprising a spatial light modulator, detector array, and a beam splitter; (4) a device comprising a spatial light modulator and a physical aperture positioned over or an imaged aperture projected onto the photoactive area of the spatial light modulator; (5) a system for optically aligning or pointing a laser in a holographic drive head assembly; (6) a light source subassembly comprising a laser, a fiber coupling lens; and an optical fiber having a fiber connector ready output end; and (7) a light source subsystem comprising a laser source, beam conditioning optics, fiber coupling optics for receiving the conditioned light beam, and a fiber optic connector for receiving the conditioned light beam from the fiber coupling optics.
摘要:
Aspects of the present invention are generally directed to a holographic system. Generally, aspects of the present invention are directed to allocating power of a light beam generated by a coherent light source among the various discrete light beams used in a holographic system. Specifically, a variable optical divider is incorporated into an optical steering subsystem of the holographic memory system to redirect the coherent light beam into one or more discrete light beams, and to dynamically allocate power of the coherent light beam among the discrete light beams.
摘要:
The present invention relates to embodiments of: (1) a unitary holographic drive head assembly mounting structure; (2) an assembly comprising a unitary holographic drive head assembly mounting structure and a plurality of holographic drive head components and/or subassemblies; (3) a subassembly comprising a spatial light modulator, detector array, and a beam splitter; (4) a device comprising a spatial light modulator and a physical aperture positioned over or an imaged aperture projected onto the photoactive area of the spatial light modulator; (5) a system for optically aligning or pointing a laser in a holographic drive head assembly; (6) a light source subassembly comprising a laser, a fiber coupling lens; and an optical fiber having a fiber connector ready output end; and (7) a light source subsystem comprising a laser source, beam conditioning optics, fiber coupling optics for receiving the conditioned light beam, and a fiber optic connector for receiving the conditioned light beam from the fiber coupling optics.
摘要:
Structures, subassemblies, devices, systems, and subsystems selected from: (1) a unitary holographic drive head assembly mounting structure; (2) an assembly including a unitary holographic drive head assembly mounting structure and a plurality of holographic drive head components and/or subassemblies; (3) a subassembly including a spatial light modulator, detector array, and a beam splitter; (4) a device including a spatial light modulator and a physical aperture positioned over or an imaged aperture projected onto the photoactive area of the spatial light modulator; (5) a system for optically aligning or pointing a laser in a holographic drive head assembly; (6) a light source subassembly including a laser, a fiber coupling lens; and an optical fiber having a fiber connector ready output end; and (7) a light source subsystem including a laser source, beam conditioning optics, fiber coupling optics for receiving the conditioned light beam, and a fiber optic connector for receiving the conditioned light beam from the fiber coupling optics.
摘要:
The present invention relates to embodiments of: (1) a unitary holographic drive head assembly mounting structure; (2) an assembly comprising a unitary holographic drive head assembly mounting structure and a plurality of holographic drive head components and/or subassemblies; (3) a subassembly comprising a spatial light modulator, detector array, and a beam splitter; (4) a device comprising a spatial light modulator and a physical aperture positioned over or an imaged aperture projected onto the photoactive area of the spatial light modulator; (5) a system for optically aligning or pointing a laser in a holographic drive head assembly; (6) a light source subassembly comprising a laser, a fiber coupling lens; and an optical fiber having a fiber connector ready output end; and (7) a light source subsystem comprising a laser source, beam conditioning optics, fiber coupling optics for receiving the conditioned light beam, and a fiber optic connector for receiving the conditioned light beam from the fiber coupling optics.
摘要:
A holographic memory system is disclosed. The holographic memory system comprises: a light source configured to generate a light beam; a photosensitive holographic storage medium configured to at least partially reflect the light beam; and an alignment module configured to determine an angular orientation of the storage medium based on the reflected light beam.
摘要:
A hologram recording and playback method comprises establishing in advance a test region adapted to record a piece of test data for each of a reference incidence angle and a plurality of stepped incidence angles of a recording reference beam in a recording medium, successively setting an incidence angle of the recording reference beam equal to the reference incidence angle or one of the plurality of the stepped incidence angles, successively recording in the test region each piece of the test data, causing a playback reference beam to be applied to the test region at the same incidence angle as the reference incidence angle to globally play back all the pieces of the test data, selecting the data with the maximum diffraction efficiency, and correcting the incidence angles of the recording reference beam and the playback reference beam based on the difference between the reference incidence angle or one of the plurality of the stepped incidence angles corresponding to the selected data and the reference incidence angle.
摘要:
To provide an optical recording apparatus capable of effectively suppressing useless fixation to an information-unrecorded area during a fixing process with a simple structure, and an optical head. Upon recording information, a movable lens of an expander lens 104 is positioned in an information recording position. In an information fixing process, the movable lens of the expander lens 104 is positioned in a fixing-process position. In this case, a range of irradiation to the recording medium with the data light becomes somewhat wider than that in the information recording process. Accordingly, it is possible to fix the information to an area irradiated with the data light in the information recording process without fail. In addition, the irradiation range is only somewhat wider than that in the information fixing process, making it possible to minimize the region uselessly subjected to the fixing process.
摘要:
The present invention relates to embodiments of a process for subjecting a holographic storage medium to illuminative treatment to: (1) enhance or optimize recording of holographic data; (2) enhance or optimize reading of recorded holographic data; and/or (3) erase recorded holographic data. The present invention also relates to embodiments of a system comprising: (a) an illuminative treatment beam; (b) means for reducing the coherence of the beam and (c) means for transmitting the reduced coherence beam to cause illuminative treatment of: (1) an unrecorded portion of a holographic storage medium to provide pre-cured portions having increased ability to stably record holographic data; (2) a recorded portion of a holographic storage medium to provide a post-cured portion having reduced residual sensitivity; and/or (3) a recorded portion of a holographic storage medium having holographic data to provide an erased portion wherein at least some of the recorded holographic data is erased.
摘要:
The present invention relates to embodiments of: (1) a unitary holographic drive head assembly mounting structure; (2) an assembly comprising a unitary holographic drive head assembly mounting structure and a plurality of holographic drive head components and/or subassemblies; (3) a subassembly comprising a spatial light modulator, detector array, and a beam splitter; (4) a device comprising a spatial light modulator and a physical aperture positioned over or an imaged aperture projected onto the photoactive area of the spatial light modulator; (5) a system for optically aligning or pointing a laser in a holographic drive head assembly; (6) a light source subassembly comprising a laser, a fiber coupling lens; and an optical fiber having a fiber connector ready output end; and (7) a light source subsystem comprising a laser source, beam conditioning optics, fiber coupling optics for receiving the conditioned light beam, and a fiber optic connector for receiving the conditioned light beam from the fiber coupling optics.